A Multi-stage Strategy for Chinese Discourse Tree Construction

Tishuang Wang, Peifeng Li, Qiaoming Zhu
{"title":"A Multi-stage Strategy for Chinese Discourse Tree Construction","authors":"Tishuang Wang, Peifeng Li, Qiaoming Zhu","doi":"10.1109/IALP48816.2019.9037684","DOIUrl":null,"url":null,"abstract":"Building discourse tree is crucial to improve the performance of discourse parsing. There are two issues in previous work on discourse tree construction, i.e., the error accumulation and the influence of connectives in transition-based algorithms. To address above issues, this paper proposes a tensor-based neural network with the multi-stage strategy and connective deletion mechanism. Experimental results on both CDTB and RST-DT show that our model achieves the state-of-the-art performance.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Building discourse tree is crucial to improve the performance of discourse parsing. There are two issues in previous work on discourse tree construction, i.e., the error accumulation and the influence of connectives in transition-based algorithms. To address above issues, this paper proposes a tensor-based neural network with the multi-stage strategy and connective deletion mechanism. Experimental results on both CDTB and RST-DT show that our model achieves the state-of-the-art performance.
汉语语篇树构建的多阶段策略
构建语篇树是提高语篇分析性能的关键。在以往的语篇树构建工作中存在两个问题,即基于转换的算法中的错误积累和连接词的影响。为了解决上述问题,本文提出了一种基于张量的神经网络,该网络具有多阶段策略和连接删除机制。在CDTB和RST-DT上的实验结果表明,我们的模型达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信