Mirko Viroli, A. Bucchiarone, Danilo Pianini, J. Beal
{"title":"Combining Self-Organisation and Autonomic Computing in CASs with Aggregate-MAPE","authors":"Mirko Viroli, A. Bucchiarone, Danilo Pianini, J. Beal","doi":"10.1109/FAS-W.2016.49","DOIUrl":null,"url":null,"abstract":"Aggregate computing is a recently proposed framework to build CASs (collective adaptive systems) by focussing on direct programming of ensembles so as to abstract away from individual devices and their single interaction acts: this approach is shown to streamline the identification of highly reusable block components, and support reasoning about their resiliency properties. Following this paradigm, in this paper we present a framework for bridging the gap between the MAPE (Monitor-Analyse-Plan-Execute) loop of autonomic computing managers, and fully-distributed self-organising CASs. This is achieved by seeing the collection of M components of each agent as an aggregate, amenable to a direct specification as overall CAS Monitoring behaviour, and similarly for A, P and E. As a result, a self-organising CAS can be programmed by clearly separating the M, A, P, and E parts of it, though each is expressed in terms of a collective behaviour. The proposed approach is exemplified with an application scenario of crowd dispersal in a large-scale smart-mobility application.","PeriodicalId":382778,"journal":{"name":"2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"5 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2016.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Aggregate computing is a recently proposed framework to build CASs (collective adaptive systems) by focussing on direct programming of ensembles so as to abstract away from individual devices and their single interaction acts: this approach is shown to streamline the identification of highly reusable block components, and support reasoning about their resiliency properties. Following this paradigm, in this paper we present a framework for bridging the gap between the MAPE (Monitor-Analyse-Plan-Execute) loop of autonomic computing managers, and fully-distributed self-organising CASs. This is achieved by seeing the collection of M components of each agent as an aggregate, amenable to a direct specification as overall CAS Monitoring behaviour, and similarly for A, P and E. As a result, a self-organising CAS can be programmed by clearly separating the M, A, P, and E parts of it, though each is expressed in terms of a collective behaviour. The proposed approach is exemplified with an application scenario of crowd dispersal in a large-scale smart-mobility application.