Compression of HD videos by a contrast-based human attention algorithm

Sylvia O. N’guessan, N. Ling, Zhouye Gu
{"title":"Compression of HD videos by a contrast-based human attention algorithm","authors":"Sylvia O. N’guessan, N. Ling, Zhouye Gu","doi":"10.1109/MMSP.2014.6958825","DOIUrl":null,"url":null,"abstract":"The emergence of social networks combined with the prevalence of mobile technology has led to an increasing demand of high definition video transmission and storage. One of the challenges of video compression is the ability to reduce the video size without significant visual quality loss. In this paper, we propose a new method that achieves compression reduction levels ranging from 2.6% to 16.9% while maintaining or improving subjective quality. Precisely, our approach is a saliency-aware mechanism that predicts and classifies regions-of-interests (ROIs) of a typical human eye gaze according to the static attention model (SAM) from the human visual system (HVS). We coin the term contrast human attention regions of interest (Contrast-HAROIs) to refer to those identified regions. Finally, we reduce the data load of those non Contrast-HAROIs via a smoothing spatial filter. Experimental results carried on eight sequences show that our technique reduces the size of HD videos further than the standard H.264/AVC. Moreover, it is in average 30% times faster than another saliency and motion aware algorithm.","PeriodicalId":164858,"journal":{"name":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","volume":"92 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2014.6958825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The emergence of social networks combined with the prevalence of mobile technology has led to an increasing demand of high definition video transmission and storage. One of the challenges of video compression is the ability to reduce the video size without significant visual quality loss. In this paper, we propose a new method that achieves compression reduction levels ranging from 2.6% to 16.9% while maintaining or improving subjective quality. Precisely, our approach is a saliency-aware mechanism that predicts and classifies regions-of-interests (ROIs) of a typical human eye gaze according to the static attention model (SAM) from the human visual system (HVS). We coin the term contrast human attention regions of interest (Contrast-HAROIs) to refer to those identified regions. Finally, we reduce the data load of those non Contrast-HAROIs via a smoothing spatial filter. Experimental results carried on eight sequences show that our technique reduces the size of HD videos further than the standard H.264/AVC. Moreover, it is in average 30% times faster than another saliency and motion aware algorithm.
基于对比度的人类注意力算法压缩高清视频
随着社交网络的出现和移动技术的普及,对高清视频传输和存储的需求不断增加。视频压缩面临的挑战之一是如何在不造成明显视觉质量损失的情况下减小视频大小。在本文中,我们提出了一种新的方法,在保持或提高主观质量的同时,实现了2.6%至16.9%的压缩降低水平。准确地说,我们的方法是一种显著性感知机制,根据人类视觉系统(HVS)的静态注意模型(SAM)预测和分类典型人眼注视的兴趣区域(roi)。我们创造了“对比人类感兴趣的注意力区域”(contrast - harois)一词来指代那些已识别的区域。最后,我们通过平滑空间滤波来减少非对比haroi的数据负载。在8个序列上进行的实验结果表明,与标准的H.264/AVC相比,我们的技术进一步减小了高清视频的大小。此外,它比另一种显著性和运动感知算法平均快30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信