Automated recognition of partial discharge in oil-immersed insulation

Hamed Janani, N. Jacob, B. Kordi
{"title":"Automated recognition of partial discharge in oil-immersed insulation","authors":"Hamed Janani, N. Jacob, B. Kordi","doi":"10.1109/ICACACT.2014.7223599","DOIUrl":null,"url":null,"abstract":"This paper presents an application of pattern recognition techniques for identification of partial discharge sources in oil-immersed insulation. Three sources of partial discharge are simulated to generate artificial partial discharge data; bubble wrap to simulate air bubbles, needle to simulate corona discharge, and metal particles. Fingerprints from phase resolved partial discharge patterns are extracted. Dimension reduction techniques are employed to reduce the size of the collected data. Two classifiers (k Nearest Neighbor and Support Vector Machine) are developed for partial discharge source identification. The results show that the proposed classifiers are well able to identify the sources of partial discharge.","PeriodicalId":101532,"journal":{"name":"2014 International Conference on Advances in Communication and Computing Technologies (ICACACT 2014)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advances in Communication and Computing Technologies (ICACACT 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACACT.2014.7223599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents an application of pattern recognition techniques for identification of partial discharge sources in oil-immersed insulation. Three sources of partial discharge are simulated to generate artificial partial discharge data; bubble wrap to simulate air bubbles, needle to simulate corona discharge, and metal particles. Fingerprints from phase resolved partial discharge patterns are extracted. Dimension reduction techniques are employed to reduce the size of the collected data. Two classifiers (k Nearest Neighbor and Support Vector Machine) are developed for partial discharge source identification. The results show that the proposed classifiers are well able to identify the sources of partial discharge.
油浸绝缘局部放电自动识别
本文介绍了模式识别技术在油浸绝缘局部放电源识别中的应用。模拟三种局部放电源,生成人工局部放电数据;气泡膜模拟气泡,针模拟电晕放电和金属颗粒。从相位分辨的局部放电模式中提取指纹。采用降维技术减少收集数据的大小。提出了两种分类器(k近邻和支持向量机)用于局部放电源识别。结果表明,所提出的分类器能够很好地识别局部放电源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信