GRASP based metaheuristics for layout pattern classification

M. Woo, Seungwon Kim, Seokhyeong Kang
{"title":"GRASP based metaheuristics for layout pattern classification","authors":"M. Woo, Seungwon Kim, Seokhyeong Kang","doi":"10.1109/ICCAD.2017.8203820","DOIUrl":null,"url":null,"abstract":"Layout pattern classification has been recently utilized in IC design. It clusters hotspot patterns for design-space analysis or yield optimization. In pattern classification, an optimal clustering is essential, as well as its runtime and accuracy. Within the research-oriented infrastructure used in the ICCAD 2016 contest, we have developed a fast metaheuristic for the pattern classification that utilizes the Greedy Randomized Adaptive Search Procedure (GRASP). Our proposed metaheuristic outperforms the best-reported results on all of the ICCAD 2016 benchmarks. In addition, we achieve up to a 50% cluster count reduction, and improve a runtime significantly compared to a commercial EDA tool provided in the ICCAD 2016 contest [1].","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"457 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Layout pattern classification has been recently utilized in IC design. It clusters hotspot patterns for design-space analysis or yield optimization. In pattern classification, an optimal clustering is essential, as well as its runtime and accuracy. Within the research-oriented infrastructure used in the ICCAD 2016 contest, we have developed a fast metaheuristic for the pattern classification that utilizes the Greedy Randomized Adaptive Search Procedure (GRASP). Our proposed metaheuristic outperforms the best-reported results on all of the ICCAD 2016 benchmarks. In addition, we achieve up to a 50% cluster count reduction, and improve a runtime significantly compared to a commercial EDA tool provided in the ICCAD 2016 contest [1].
基于GRASP的布局模式分类元启发式方法
布局模式分类是近年来在集成电路设计中的应用。它将热点模式聚类,用于设计空间分析或良率优化。在模式分类中,最优聚类及其运行时间和准确率至关重要。在ICCAD 2016竞赛中使用的研究型基础设施中,我们开发了一种快速的元启发式模式分类方法,该方法利用贪婪随机自适应搜索程序(GRASP)。我们提出的元启发式优于所有ICCAD 2016基准测试中报告的最佳结果。此外,与ICCAD 2016竞赛[1]中提供的商业EDA工具相比,我们实现了多达50%的集群计数减少,并显着提高了运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信