Hidden Value: Provenance as a Source for Economic and Social History

Lynn Rother, F. Mariani, Max Koss
{"title":"Hidden Value: Provenance as a Source for Economic and Social History","authors":"Lynn Rother, F. Mariani, Max Koss","doi":"10.1515/jbwg-2023-0005","DOIUrl":null,"url":null,"abstract":"Abstract Building on the extensive production of provenance data recently, this article explains how we can expand the purview of computational analysis in humanistic and social sciences by exploring how digital methods can be applied to provenances. Provenances document chains of events of ownership and socio-economic custody changes of artworks. They promise statistical and comparative insights into social and economic trends and networks. Such analyses, however, necessitate the transformation of provenances from their textual form into structured data. This article first explores some of the analytical avenues aggregate provenance data can offer for transdisciplinary historical research. It then explains in detail the use of deep learning to address natural language processing tasks for transforming provenance text into structured data, such as Sentence Boundary Detection and Span Categorization. To illustrate the potential of this pioneering approach, this article ends with two examples of preliminary analysis of structured provenance data.","PeriodicalId":195429,"journal":{"name":"Jahrbuch für Wirtschaftsgeschichte / Economic History Yearbook","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jahrbuch für Wirtschaftsgeschichte / Economic History Yearbook","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jbwg-2023-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Building on the extensive production of provenance data recently, this article explains how we can expand the purview of computational analysis in humanistic and social sciences by exploring how digital methods can be applied to provenances. Provenances document chains of events of ownership and socio-economic custody changes of artworks. They promise statistical and comparative insights into social and economic trends and networks. Such analyses, however, necessitate the transformation of provenances from their textual form into structured data. This article first explores some of the analytical avenues aggregate provenance data can offer for transdisciplinary historical research. It then explains in detail the use of deep learning to address natural language processing tasks for transforming provenance text into structured data, such as Sentence Boundary Detection and Span Categorization. To illustrate the potential of this pioneering approach, this article ends with two examples of preliminary analysis of structured provenance data.
隐藏的价值:作为经济和社会历史来源的出处
摘要本文以最近大量的来源数据为基础,阐述了我们如何通过探索数字方法如何应用于来源来扩大人文社会科学计算分析的范围。出处记录了艺术品所有权和社会经济保管变化的事件链。它们承诺对社会和经济趋势和网络的统计和比较见解。然而,这种分析需要将来源从文本形式转换为结构化数据。本文首先探讨了综合物源数据为跨学科历史研究提供的一些分析途径。然后详细解释了使用深度学习来解决将来源文本转换为结构化数据的自然语言处理任务,例如句子边界检测和Span分类。为了说明这种开创性方法的潜力,本文以结构化来源数据的两个初步分析示例作为结束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信