{"title":"A new ranking method for trapezoidal intuitionistic fuzzy numbers and its application to multi-criteria decision making","authors":"Lorena Popa","doi":"10.15837/ijccc.2023.2.5118","DOIUrl":null,"url":null,"abstract":"The ranking of intuitionistic fuzzy numbers is paramount in the decision making process in a fuzzy and uncertain environment. In this paper, a new ranking function is defined, which is based on Robust’s ranking index of the membership function and the non-membership function of trapezoidal intuitionistic fuzzy numbers. The mentioned function also incorporates a parameter for the attitude of the decision factors. The given method is illustrated through several numerical examples and is studied in comparison to other already-existent methods. Starting from the new classification method, an algorithm for solving fuzzy multi-criteria decision-making (MCDM) problems is proposed. The application of said algorithm implies accepting the subjectivity of the deciding factors, and offers a clear perspective on the way in which the subjective attitude influences the decision-making process. Finally, a MCDM problem is solved to outline the advantages of the algorithm proposed in this paper.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2023.2.5118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The ranking of intuitionistic fuzzy numbers is paramount in the decision making process in a fuzzy and uncertain environment. In this paper, a new ranking function is defined, which is based on Robust’s ranking index of the membership function and the non-membership function of trapezoidal intuitionistic fuzzy numbers. The mentioned function also incorporates a parameter for the attitude of the decision factors. The given method is illustrated through several numerical examples and is studied in comparison to other already-existent methods. Starting from the new classification method, an algorithm for solving fuzzy multi-criteria decision-making (MCDM) problems is proposed. The application of said algorithm implies accepting the subjectivity of the deciding factors, and offers a clear perspective on the way in which the subjective attitude influences the decision-making process. Finally, a MCDM problem is solved to outline the advantages of the algorithm proposed in this paper.