Multi-Parameter Analysis of Finding Minors and Subgraphs in Edge Periodic Temporal Graphs

Emmanuel Arrighi, Niels Gruttemeier, Nils Morawietz, Frank Sommer, Petra Wolf
{"title":"Multi-Parameter Analysis of Finding Minors and Subgraphs in Edge Periodic Temporal Graphs","authors":"Emmanuel Arrighi, Niels Gruttemeier, Nils Morawietz, Frank Sommer, Petra Wolf","doi":"10.48550/arXiv.2203.07401","DOIUrl":null,"url":null,"abstract":"We study the computational complexity of determining structural properties of edge periodic temporal graphs (EPGs). EPGs are time-varying graphs that compactly represent periodic behavior of components of a dynamic network, for example, train schedules on a rail network. In EPGs, for each edge $e$ of the graph, a binary string $s_e$ determines in which time steps the edge is present, namely $e$ is present in time step $t$ if and only if $s_e$ contains a $1$ at position $t \\mod |s_e|$. Due to this periodicity, EPGs serve as very compact representations of complex periodic systems and can even be exponentially smaller than classic temporal graphs representing one period of the same system, as the latter contain the whole sequence of graphs explicitly. In this paper, we study the computational complexity of fundamental questions of the new concept of EPGs such as what is the shortest traversal time between two vertices; is there a time step in which the graph (1) is minor-free; (2) contains a minor; (3) is subgraph-free; (4) contains a subgraph; with respect to a given minor or subgraph. We give a detailed parameterized analysis for multiple combinations of parameters for the problems stated above including several parameterized algorithms.","PeriodicalId":266155,"journal":{"name":"Conference on Current Trends in Theory and Practice of Informatics","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Current Trends in Theory and Practice of Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.07401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the computational complexity of determining structural properties of edge periodic temporal graphs (EPGs). EPGs are time-varying graphs that compactly represent periodic behavior of components of a dynamic network, for example, train schedules on a rail network. In EPGs, for each edge $e$ of the graph, a binary string $s_e$ determines in which time steps the edge is present, namely $e$ is present in time step $t$ if and only if $s_e$ contains a $1$ at position $t \mod |s_e|$. Due to this periodicity, EPGs serve as very compact representations of complex periodic systems and can even be exponentially smaller than classic temporal graphs representing one period of the same system, as the latter contain the whole sequence of graphs explicitly. In this paper, we study the computational complexity of fundamental questions of the new concept of EPGs such as what is the shortest traversal time between two vertices; is there a time step in which the graph (1) is minor-free; (2) contains a minor; (3) is subgraph-free; (4) contains a subgraph; with respect to a given minor or subgraph. We give a detailed parameterized analysis for multiple combinations of parameters for the problems stated above including several parameterized algorithms.
边周期时间图中查找子图和子图的多参数分析
研究了确定边缘周期时间图(EPGs)结构性质的计算复杂度。epg是时变图,它紧凑地表示动态网络组件的周期性行为,例如,铁路网络上的列车时刻表。在EPGs中,对于图的每条边$e$,一个二进制字符串$s_e$决定了这条边出现在哪个时间步长,即$e$出现在时间步长$t$当且仅当$s_e$在位置$t \mod |s_e|$上包含$1$。由于这种周期性,epg作为复杂周期系统的非常紧凑的表示,甚至可以比表示同一系统的一个周期的经典时间图指数小,因为后者显式地包含了整个图序列。在本文中,我们研究了epg新概念的基本问题的计算复杂度,如两个顶点之间的最短穿越时间是多少;是否存在图(1)不存在次元的时间步长;(二)有未成年人的;(3)无子图;(4)包含子图;相对于一个给定的子图或子图。我们对上述问题的多个参数组合进行了详细的参数化分析,包括几种参数化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信