Statistical Forecasting of Vegetation Indices using Integrated Neuro-Fuzzy Inference System with Bio-Inspired Techniques

V. Sardar, S. Chaudhari, T. Ashwini, L. M. Sahana, D. Sangeetha, Shwetha S Padti
{"title":"Statistical Forecasting of Vegetation Indices using Integrated Neuro-Fuzzy Inference System with Bio-Inspired Techniques","authors":"V. Sardar, S. Chaudhari, T. Ashwini, L. M. Sahana, D. Sangeetha, Shwetha S Padti","doi":"10.1109/RTEICT52294.2021.9573712","DOIUrl":null,"url":null,"abstract":"Excess of water usage from limited water resources leads to drought situation in many part of world. Drought analysis and prediction techniques based on time series rainfall and temperature data exists in the literature. The proposed Neuro- Fuzzy Inference System (NFIS) with bio-inspired techniques in this paper for drought prediction related to agriculture production is discussed in this paper. It uses important indices for drought analysis and prediction such as Standardized Precipitation Index (SPI)., Standard Precipitation Evapotranspiration Index (SPEI) and Moisture Adequacy Index (MAI). Three bio-inspired algorithms such as Genetic Algorithm (GA)., Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) have been used with NFIS. The rainfall and temperature dataset is collected from 2002–2018 for Bellary., the district of Karnataka. The error rates for NFIS-GA., NFIS-PSO., NFIS-ACO., and NFIS models are 0.0296., 0.0322., 0.0358 and 0.0456., respectively while the accuracy rates are 1., 0. 9791(1 month was incorrectly predicted out of 48)., 1 and 0.8548 (3 months incorrectly predicted)., respectively. When the accuracy is 1., it indicates that all the months were predicted correctly out of 48 months.","PeriodicalId":191410,"journal":{"name":"2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTEICT52294.2021.9573712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Excess of water usage from limited water resources leads to drought situation in many part of world. Drought analysis and prediction techniques based on time series rainfall and temperature data exists in the literature. The proposed Neuro- Fuzzy Inference System (NFIS) with bio-inspired techniques in this paper for drought prediction related to agriculture production is discussed in this paper. It uses important indices for drought analysis and prediction such as Standardized Precipitation Index (SPI)., Standard Precipitation Evapotranspiration Index (SPEI) and Moisture Adequacy Index (MAI). Three bio-inspired algorithms such as Genetic Algorithm (GA)., Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) have been used with NFIS. The rainfall and temperature dataset is collected from 2002–2018 for Bellary., the district of Karnataka. The error rates for NFIS-GA., NFIS-PSO., NFIS-ACO., and NFIS models are 0.0296., 0.0322., 0.0358 and 0.0456., respectively while the accuracy rates are 1., 0. 9791(1 month was incorrectly predicted out of 48)., 1 and 0.8548 (3 months incorrectly predicted)., respectively. When the accuracy is 1., it indicates that all the months were predicted correctly out of 48 months.
基于生物启发技术的综合神经模糊推理系统的植被指数统计预测
有限水资源的过度用水导致世界许多地区出现干旱状况。文献中已有基于时间序列降水和温度数据的干旱分析和预测技术。本文讨论了基于生物技术的神经模糊推理系统(NFIS)在农业生产干旱预测中的应用。利用标准化降水指数(SPI)等干旱分析和预测的重要指标。、标准降水蒸散指数(SPEI)和水分充足指数(MAI)。三种生物启发算法,如遗传算法(GA)。在NFIS中应用了粒子群算法(PSO)和蚁群算法(ACO)。降雨量和温度数据集收集于2002-2018年的贝拉里。位于卡纳塔克邦。nfiss - ga的错误率。, NFIS-PSO。, NFIS-ACO。, NFIS模型为0.0296。0.0322点。0.0358和0.0456。,正确率为1。, 0。9791(48个月中有1个月预测错误)。, 1和0.8548(3个月预测错误)。,分别。当精度为1时。,这表明在48个月中,所有月份的预测都是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信