Using fitness distributions to improve the evolution of learning structures

C. Igel, M. Kreutz
{"title":"Using fitness distributions to improve the evolution of learning structures","authors":"C. Igel, M. Kreutz","doi":"10.1109/CEC.1999.785505","DOIUrl":null,"url":null,"abstract":"The absolute benefit, a measure of improvement in the fitness space, is derived from the viewpoint of fitness distribution and fitness trajectory analysis. It is used for online operator adaptation, where the optimization of density estimation models serves as an example. A new information theory based measure is proposed to judge the accuracy of the evolved models. Further, the absolute benefit is applied to offline analysis of new gradient based operators used for coefficient adaptation in genetic programming. An efficient method to calculate the gradient information is presented.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.785505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The absolute benefit, a measure of improvement in the fitness space, is derived from the viewpoint of fitness distribution and fitness trajectory analysis. It is used for online operator adaptation, where the optimization of density estimation models serves as an example. A new information theory based measure is proposed to judge the accuracy of the evolved models. Further, the absolute benefit is applied to offline analysis of new gradient based operators used for coefficient adaptation in genetic programming. An efficient method to calculate the gradient information is presented.
利用适应度分布改进学习结构的进化
从健身分布和健身轨迹分析的角度推导出健身空间改善的绝对效益。以密度估计模型的优化为例,将其用于在线算子自适应。提出了一种新的基于信息论的度量来判断进化模型的准确性。此外,将绝对效益应用于遗传规划中用于系数自适应的基于梯度算子的离线分析。提出了一种计算梯度信息的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信