Fatemeh Kavehmadavani, Van-Dinh Nguyen, T. Vu, S. Chatzinotas
{"title":"Traffic Steering for eMBB and uRLLC Coexistence in Open Radio Access Networks","authors":"Fatemeh Kavehmadavani, Van-Dinh Nguyen, T. Vu, S. Chatzinotas","doi":"10.1109/iccworkshops53468.2022.9814611","DOIUrl":null,"url":null,"abstract":"Existing radio access network (RAN) architectures are lack of sufficient openness, flexibility, and intelligence to meet the diverse demands of emerging services in beyond 5G and 6G wireless networks, including enhanced mobile broadband (eMBB) and ultra-reliable and low-latency (uRLLC). Open RAN (ORAN) is a promising paradigm that allows building a virtualized and intelligent architecture. In this paper, we focus on traffic steering (TS) scheme based on multi-connectivity (MC) and network slicing (NS) techniques to efficiently allocate heterogeneous network resources in “NextG” cellular networks. We formulate the RAN resource allocation problem to simultaneously maximize the weighted sum eMBB throughput and minimize the worst-user uRLLC latency subject to QoS requirements, and orthogonality, power, and limited fronthaul constraints. Since the formulated problem is categorized as a mixed integer nonlinear problem (MINLP), we first relax binary variables to continuous ones and develop an efficient iterative algorithm based on successive convex approximation technique. System-level simulation results demon-strate the effectiveness of the proposed algorithm, compared to several well-known benchmark schemes.","PeriodicalId":102261,"journal":{"name":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccworkshops53468.2022.9814611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Existing radio access network (RAN) architectures are lack of sufficient openness, flexibility, and intelligence to meet the diverse demands of emerging services in beyond 5G and 6G wireless networks, including enhanced mobile broadband (eMBB) and ultra-reliable and low-latency (uRLLC). Open RAN (ORAN) is a promising paradigm that allows building a virtualized and intelligent architecture. In this paper, we focus on traffic steering (TS) scheme based on multi-connectivity (MC) and network slicing (NS) techniques to efficiently allocate heterogeneous network resources in “NextG” cellular networks. We formulate the RAN resource allocation problem to simultaneously maximize the weighted sum eMBB throughput and minimize the worst-user uRLLC latency subject to QoS requirements, and orthogonality, power, and limited fronthaul constraints. Since the formulated problem is categorized as a mixed integer nonlinear problem (MINLP), we first relax binary variables to continuous ones and develop an efficient iterative algorithm based on successive convex approximation technique. System-level simulation results demon-strate the effectiveness of the proposed algorithm, compared to several well-known benchmark schemes.