Parametric keyframe interpolation incorporating kinetic adjustment and phrasing control

Scott N. Steketee, N. Badler
{"title":"Parametric keyframe interpolation incorporating kinetic adjustment and phrasing control","authors":"Scott N. Steketee, N. Badler","doi":"10.1145/325334.325243","DOIUrl":null,"url":null,"abstract":"Parametric keyframing is a popular animation technique where values for parameters which control the position, orientation, size, and shape of modeled objects are determined at key times, then interpolated for smooth animation. Typically the parameter values defined by the keyframes are interpolated by spline techniques with the result that the parameter change kinetics are implicitly defined by the given keyframe times and data points. Existing interpolation systems for animation are examined and found to lack certain desirable features such as continuity of acceleration or convenient kinetic control. The requirements of interpolation for animation are analyzed in order to determine the characteristics of a satisfactory system. A new interpolation system is developed and implemented which incorporates second-derivative continuity (continuity of acceleration), local control, convenient kinetic control, and joining and phrasing of successive motions. Phrasing control includes the ability to parametrically control the degree and extent of smooth motion flow between separately defined motions.","PeriodicalId":163416,"journal":{"name":"Proceedings of the 12th annual conference on Computer graphics and interactive techniques","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"146","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/325334.325243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 146

Abstract

Parametric keyframing is a popular animation technique where values for parameters which control the position, orientation, size, and shape of modeled objects are determined at key times, then interpolated for smooth animation. Typically the parameter values defined by the keyframes are interpolated by spline techniques with the result that the parameter change kinetics are implicitly defined by the given keyframe times and data points. Existing interpolation systems for animation are examined and found to lack certain desirable features such as continuity of acceleration or convenient kinetic control. The requirements of interpolation for animation are analyzed in order to determine the characteristics of a satisfactory system. A new interpolation system is developed and implemented which incorporates second-derivative continuity (continuity of acceleration), local control, convenient kinetic control, and joining and phrasing of successive motions. Phrasing control includes the ability to parametrically control the degree and extent of smooth motion flow between separately defined motions.
参数关键帧插值结合动力学调整和措辞控制
参数关键帧是一种流行的动画技术,在关键时刻确定控制建模对象的位置、方向、大小和形状的参数值,然后进行插值以获得平滑的动画。通常由关键帧定义的参数值通过样条技术进行插值,结果是参数变化动力学由给定的关键帧时间和数据点隐式定义。对现有的动画插值系统进行了研究,发现它们缺乏某些理想的特性,如加速度的连续性或方便的动力学控制。为了确定一个满意的系统的特性,分析了动画插值的要求。设计并实现了一种二阶导数连续(加速度连续)、局部控制、方便的运动控制以及连续运动的连接和分段的插补系统。分段控制包括参数化控制在单独定义的运动之间平滑运动流的程度和范围的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信