Extraction of visual information using maximum likelihood Hebbian learning

E. Corchado, C. Fyfe
{"title":"Extraction of visual information using maximum likelihood Hebbian learning","authors":"E. Corchado, C. Fyfe","doi":"10.1109/SBRN.2002.1181479","DOIUrl":null,"url":null,"abstract":"We explore an extension of Hebbian learning which has been called /spl epsiv/-insensitive Hebbian learning, and derive lateral connections from a probability density function (PDF). We use these lateral connections to move outputs towards the mode of the PDF and use the resulting outputs to train the feedforward connections. We show that /spl epsiv/-insensitive Hebbian learning may be considered as a special case of maximum likelihood Hebbian learning and investigate the resulting network with both real and artificial data. We finally show that the resulting network is able to identify motion in the environment.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We explore an extension of Hebbian learning which has been called /spl epsiv/-insensitive Hebbian learning, and derive lateral connections from a probability density function (PDF). We use these lateral connections to move outputs towards the mode of the PDF and use the resulting outputs to train the feedforward connections. We show that /spl epsiv/-insensitive Hebbian learning may be considered as a special case of maximum likelihood Hebbian learning and investigate the resulting network with both real and artificial data. We finally show that the resulting network is able to identify motion in the environment.
利用最大似然Hebbian学习提取视觉信息
我们探索了Hebbian学习的扩展,称为/spl epsiv/-insensitive Hebbian学习,并从概率密度函数(PDF)中推导出横向连接。我们使用这些横向连接将输出移动到PDF模式,并使用产生的输出来训练前馈连接。我们证明了/spl epsiv/-insensitive型Hebbian学习可以被认为是最大似然Hebbian学习的一种特殊情况,并使用真实数据和人工数据对所得网络进行了研究。我们最终证明了所得到的网络能够识别环境中的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信