Causal Models with Constraints

CLEaR Pub Date : 2023-01-17 DOI:10.48550/arXiv.2301.06845
Sander Beckers, J. Halpern, Christopher R. Hitchcock
{"title":"Causal Models with Constraints","authors":"Sander Beckers, J. Halpern, Christopher R. Hitchcock","doi":"10.48550/arXiv.2301.06845","DOIUrl":null,"url":null,"abstract":"Causal models have proven extremely useful in offering formal representations of causal relationships between a set of variables. Yet in many situations, there are non-causal relationships among variables. For example, we may want variables $LDL$, $HDL$, and $TOT$ that represent the level of low-density lipoprotein cholesterol, the level of lipoprotein high-density lipoprotein cholesterol, and total cholesterol level, with the relation $LDL+HDL=TOT$. This cannot be done in standard causal models, because we can intervene simultaneously on all three variables. The goal of this paper is to extend standard causal models to allow for constraints on settings of variables. Although the extension is relatively straightforward, to make it useful we have to define a new intervention operation that $disconnects$ a variable from a causal equation. We give examples showing the usefulness of this extension, and provide a sound and complete axiomatization for causal models with constraints.","PeriodicalId":171742,"journal":{"name":"CLEaR","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEaR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.06845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Causal models have proven extremely useful in offering formal representations of causal relationships between a set of variables. Yet in many situations, there are non-causal relationships among variables. For example, we may want variables $LDL$, $HDL$, and $TOT$ that represent the level of low-density lipoprotein cholesterol, the level of lipoprotein high-density lipoprotein cholesterol, and total cholesterol level, with the relation $LDL+HDL=TOT$. This cannot be done in standard causal models, because we can intervene simultaneously on all three variables. The goal of this paper is to extend standard causal models to allow for constraints on settings of variables. Although the extension is relatively straightforward, to make it useful we have to define a new intervention operation that $disconnects$ a variable from a causal equation. We give examples showing the usefulness of this extension, and provide a sound and complete axiomatization for causal models with constraints.
带约束的因果模型
因果模型在提供一组变量之间因果关系的形式化表示方面已被证明是非常有用的。然而,在许多情况下,变量之间存在非因果关系。例如,我们可能想要变量$LDL$、$HDL$和$TOT$来表示低密度脂蛋白胆固醇水平、脂蛋白高密度脂蛋白胆固醇水平和总胆固醇水平,关系为$LDL+HDL=TOT$。这在标准的因果模型中是做不到的,因为我们可以同时干预这三个变量。本文的目标是扩展标准因果模型,以允许对变量设置的约束。虽然扩展相对简单,但为了使其有用,我们必须定义一个新的干预操作,将变量从因果方程中断开。我们给出的例子显示了这种扩展的有用性,并提供了一个健全的和完整的公理与约束的因果模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信