T. Stokes, J. Torrance, N. L. Goasduff, Henry Li, May D. Wang
{"title":"ArrayWiki: Liberating Microarray Data from Non-collaborative Public Repositories","authors":"T. Stokes, J. Torrance, N. L. Goasduff, Henry Li, May D. Wang","doi":"10.1109/IMSCCS.2007.88","DOIUrl":null,"url":null,"abstract":"Speech-stream detection plays an important role in short-wave communication. It is tiring for a person to listen something for a long time, especially in adverse environments. An algorithm for speech-stream detection in noisy environments, based on the empirical mode decomposition (EMD) and the statistical properties of higher-order cumulants of speech signals is presented. With the EMD, the noise signals can be decomposed into different numbers of IMFs. Then, the fourth-order cumulant (FOC) can be used to extract the desired feature of statistical properties for IMF components. Since the higher-order cumulants are blind for Gaussian signals, the proposed method is especially effective regarding the problem of speech-stream detection, where the speech signal is distorted, by Gaussian noise. Besides that, with the self-adaptive decomposition by the EMD, the proposed method can also work well for non-Gaussian noise. The experiments show that the proposed algorithm can suppress different noise types with different SNR, and the algorithm is robust in the real signal tests.","PeriodicalId":427564,"journal":{"name":"International Multi-Symposium of Computer and Computational Sciences","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Multi-Symposium of Computer and Computational Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMSCCS.2007.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Speech-stream detection plays an important role in short-wave communication. It is tiring for a person to listen something for a long time, especially in adverse environments. An algorithm for speech-stream detection in noisy environments, based on the empirical mode decomposition (EMD) and the statistical properties of higher-order cumulants of speech signals is presented. With the EMD, the noise signals can be decomposed into different numbers of IMFs. Then, the fourth-order cumulant (FOC) can be used to extract the desired feature of statistical properties for IMF components. Since the higher-order cumulants are blind for Gaussian signals, the proposed method is especially effective regarding the problem of speech-stream detection, where the speech signal is distorted, by Gaussian noise. Besides that, with the self-adaptive decomposition by the EMD, the proposed method can also work well for non-Gaussian noise. The experiments show that the proposed algorithm can suppress different noise types with different SNR, and the algorithm is robust in the real signal tests.