On representation theory of partition algebras for complex reflection groups

Ashish Mishra, S. Srivastava
{"title":"On representation theory of partition algebras for complex reflection groups","authors":"Ashish Mishra, S. Srivastava","doi":"10.5802/ALCO.97","DOIUrl":null,"url":null,"abstract":"This paper defines the partition algebra for complex reflection group $G(r,p,n)$ acting on $k$-fold tensor product $(\\mathbb{C}^n)^{\\otimes k}$, where $\\mathbb{C}^n$ is the reflection representation of $G(r,p,n)$. A basis of the centralizer algebra of this action of $G(r,p,n)$ was given by Tanabe and for $p =1$, the corresponding partition algebra was studied by Orellana. We also establish a subalgebra as partition algebra of a subgroup of $G(r,p,n)$ acting on $(\\mathbb{C}^n)^{\\otimes k}$. We call these algebras as Tanabe algebras. The aim of this paper is to study representation theory of Tanabe algebras: parametrization of their irreducible modules, and construction of Bratteli diagram for the tower of Tanabe algebras. We conclude the paper by giving Jucys-Murphy elements of Tanabe algebras and their actions on the Gelfand-Tsetlin basis, determined by this multiplicity free tower, of irreducible modules.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ALCO.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper defines the partition algebra for complex reflection group $G(r,p,n)$ acting on $k$-fold tensor product $(\mathbb{C}^n)^{\otimes k}$, where $\mathbb{C}^n$ is the reflection representation of $G(r,p,n)$. A basis of the centralizer algebra of this action of $G(r,p,n)$ was given by Tanabe and for $p =1$, the corresponding partition algebra was studied by Orellana. We also establish a subalgebra as partition algebra of a subgroup of $G(r,p,n)$ acting on $(\mathbb{C}^n)^{\otimes k}$. We call these algebras as Tanabe algebras. The aim of this paper is to study representation theory of Tanabe algebras: parametrization of their irreducible modules, and construction of Bratteli diagram for the tower of Tanabe algebras. We conclude the paper by giving Jucys-Murphy elements of Tanabe algebras and their actions on the Gelfand-Tsetlin basis, determined by this multiplicity free tower, of irreducible modules.
复反射群划分代数的表示理论
本文定义了复反射群$G(r,p,n)$作用于$k$-叠张量积$(\mathbb{C}^n) $ {\otimes k}$的划分代数,其中$\mathbb{C}^n$是$G(r,p,n)$的反射表示。Tanabe给出了$G(r,p,n)$这一作用的扶正代数的一个基础,Orellana研究了$p =1$的相应划分代数。我们还建立了$G(r,p,n)$作用于$(\mathbb{C}^n)^{\otimes k}$的子群$G(r,p,n)$的划分代数。我们称这些代数为Tanabe代数。本文研究了Tanabe代数的表示理论、不可约模的参数化以及Tanabe代数塔的Bratteli图的构造。最后给出了Tanabe代数的juys - murphy元及其在不可约模的Gelfand-Tsetlin基上的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信