RAS-E2E: The SincNet end-to-end with RawNet loss for text-independent speaker verification

Pantid Chantangphol, Theerat Sakdejayont, Tawunrat Chalothorn
{"title":"RAS-E2E: The SincNet end-to-end with RawNet loss for text-independent speaker verification","authors":"Pantid Chantangphol, Theerat Sakdejayont, Tawunrat Chalothorn","doi":"10.1109/iSAI-NLP56921.2022.9960255","DOIUrl":null,"url":null,"abstract":"Despite reaching satisfactory verification performance, variousness utterance duration and phonemes and the robustness of the system remain a challenge in speaker ver-ification tasks. To deal with this challenge, we propose RAS-E2E, a novel fully cross-lingual speaker verification system that discovers meaningful information from input raw waveforms of various duration utterances, including short utterance duration, to determine whether an utterance matches the target speaker by merging two powerful paradigms: SincNet and Rawnet training scheme with Bi-RNN. The conducted experiments on Voxceleb, Gowajee and internal call-center datasets demonstrate that RAS-E2E achieves better performance compared to the recent verification systems on waveforms.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite reaching satisfactory verification performance, variousness utterance duration and phonemes and the robustness of the system remain a challenge in speaker ver-ification tasks. To deal with this challenge, we propose RAS-E2E, a novel fully cross-lingual speaker verification system that discovers meaningful information from input raw waveforms of various duration utterances, including short utterance duration, to determine whether an utterance matches the target speaker by merging two powerful paradigms: SincNet and Rawnet training scheme with Bi-RNN. The conducted experiments on Voxceleb, Gowajee and internal call-center datasets demonstrate that RAS-E2E achieves better performance compared to the recent verification systems on waveforms.
RAS-E2E: SincNet端到端的RawNet损耗,用于文本无关的说话人验证
尽管取得了令人满意的验证效果,但在说话人验证任务中,语音长度和音素的多样性以及系统的鲁棒性仍然是一个挑战。为了应对这一挑战,我们提出了一种全新的全跨语言说话人验证系统RAS-E2E,该系统通过将两种强大的范例:SincNet和Rawnet训练方案与Bi-RNN相结合,从各种持续时间的话语(包括短话语持续时间)的输入原始波形中发现有意义的信息,以确定话语是否与目标说话人匹配。在Voxceleb、Gowajee和内部呼叫中心数据集上进行的实验表明,与最近的波形验证系统相比,RAS-E2E具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信