{"title":"Mixed-initiative Personal Assistants","authors":"J. Buck, Saverio Perugini","doi":"10.1145/3017680.3022455","DOIUrl":null,"url":null,"abstract":"Specification and implementation of flexible human-computer dialogs is challenging because of the complexity involved in rendering the dialog responsive to a vast number of varied paths through which users might desire to complete the dialog. To address this problem, we developed a toolkit for modeling and implementing task-based, mixed-initiative dialogs based on metaphors from lambda calculus. Our toolkit can automatically operationalize a dialog that involves multiple prompts and/or sub-dialogs, given a high-level dialog specification of it. Our current research entails incorporating the use of natural language to make the flexibility in communicating user utterances commensurate with that in dialog completion paths.","PeriodicalId":344382,"journal":{"name":"Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3017680.3022455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Specification and implementation of flexible human-computer dialogs is challenging because of the complexity involved in rendering the dialog responsive to a vast number of varied paths through which users might desire to complete the dialog. To address this problem, we developed a toolkit for modeling and implementing task-based, mixed-initiative dialogs based on metaphors from lambda calculus. Our toolkit can automatically operationalize a dialog that involves multiple prompts and/or sub-dialogs, given a high-level dialog specification of it. Our current research entails incorporating the use of natural language to make the flexibility in communicating user utterances commensurate with that in dialog completion paths.