Semiparametric estimation and inference

M. Edge
{"title":"Semiparametric estimation and inference","authors":"M. Edge","doi":"10.1093/oso/9780198827627.003.0010","DOIUrl":null,"url":null,"abstract":"Nonparametric and semiparametric statistical methods assume models whose properties cannot be described by a finite number of parameters. For example, a linear regression model that assumes that the disturbances are independent draws from an unknown distribution is semiparametric—it includes the intercept and slope as regression parameters but has a nonparametric part, the unknown distribution of the disturbances. Nonparametric and semiparametric methods focus on the empirical distribution function, which, assuming that the data are really independent observations from the same distribution, is a consistent estimator of the true cumulative distribution function. In this chapter, with plug-in estimation and the method of moments, functionals or parameters are estimated by treating the empirical distribution function as if it were the true cumulative distribution function. Such estimators are consistent. To understand the variation of point estimates, bootstrapping is used to resample from the empirical distribution function. For hypothesis testing, one can either use a bootstrap-based confidence interval or conduct a permutation test, which can be designed to test null hypotheses of independence or exchangeability. Resampling methods—including bootstrapping and permutation testing—are flexible and easy to implement with a little programming expertise.","PeriodicalId":192186,"journal":{"name":"Statistical Thinking from Scratch","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Thinking from Scratch","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198827627.003.0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nonparametric and semiparametric statistical methods assume models whose properties cannot be described by a finite number of parameters. For example, a linear regression model that assumes that the disturbances are independent draws from an unknown distribution is semiparametric—it includes the intercept and slope as regression parameters but has a nonparametric part, the unknown distribution of the disturbances. Nonparametric and semiparametric methods focus on the empirical distribution function, which, assuming that the data are really independent observations from the same distribution, is a consistent estimator of the true cumulative distribution function. In this chapter, with plug-in estimation and the method of moments, functionals or parameters are estimated by treating the empirical distribution function as if it were the true cumulative distribution function. Such estimators are consistent. To understand the variation of point estimates, bootstrapping is used to resample from the empirical distribution function. For hypothesis testing, one can either use a bootstrap-based confidence interval or conduct a permutation test, which can be designed to test null hypotheses of independence or exchangeability. Resampling methods—including bootstrapping and permutation testing—are flexible and easy to implement with a little programming expertise.
半参数估计与推理
非参数和半参数统计方法假设模型的性质不能用有限数量的参数来描述。例如,假设干扰是独立的、来自未知分布的线性回归模型是半参数的——它包括截距和斜率作为回归参数,但有一个非参数部分,即未知的干扰分布。非参数和半参数方法侧重于经验分布函数,它假设数据实际上是来自同一分布的独立观测值,是真实累积分布函数的一致估计。在本章中,使用插件估计和矩量法,通过将经验分布函数视为真正的累积分布函数来估计函数或参数。这样的估计是一致的。为了了解点估计的变化,采用自举方法从经验分布函数中重新采样。对于假设检验,可以使用基于自举的置信区间或进行排列检验,这可以设计用于检验独立性或互换性的零假设。重采样方法(包括自引导和置换测试)是灵活的,只需一点编程专业知识就可以轻松实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信