Interpolative self-training approach for sentiment analysis

S. Aghababaei, M. Makrehchi
{"title":"Interpolative self-training approach for sentiment analysis","authors":"S. Aghababaei, M. Makrehchi","doi":"10.1109/BESC.2016.7804475","DOIUrl":null,"url":null,"abstract":"Sentiment analysis has become one of the fundamental research areas with an objective of estimating the polarity of text documents. While sentiment analysis requires rich training resources, the number of available labeled documents is limited. The proposed interpolative self-training model is an extension of self-training as one of the most common semi-supervised learning algorithms. The proposed method is based on enlarging learning documents by interpolating data in both the training and the test phase. The method also includes a weighting strategy for data selection in each iteration. The method is evaluated using four Twitter datasets for the task of sentiment analysis. The results indicate that the proposed self-training model successfully outperforms the baseline and the standard self-training approach.","PeriodicalId":225942,"journal":{"name":"2016 International Conference on Behavioral, Economic and Socio-cultural Computing (BESC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Behavioral, Economic and Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2016.7804475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Sentiment analysis has become one of the fundamental research areas with an objective of estimating the polarity of text documents. While sentiment analysis requires rich training resources, the number of available labeled documents is limited. The proposed interpolative self-training model is an extension of self-training as one of the most common semi-supervised learning algorithms. The proposed method is based on enlarging learning documents by interpolating data in both the training and the test phase. The method also includes a weighting strategy for data selection in each iteration. The method is evaluated using four Twitter datasets for the task of sentiment analysis. The results indicate that the proposed self-training model successfully outperforms the baseline and the standard self-training approach.
情感分析的插值自我训练方法
情感分析以估计文本文档的极性为目的,已成为基础研究领域之一。虽然情感分析需要丰富的训练资源,但可用的标记文档数量有限。本文提出的插值自训练模型是自训练的扩展,是最常见的半监督学习算法之一。该方法通过在训练和测试阶段插入数据来扩大学习文档。该方法还包括在每次迭代中选择数据的加权策略。该方法使用四个Twitter数据集进行情感分析任务的评估。结果表明,所提出的自训练模型成功地优于基线和标准自训练方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信