Coexistence optimized cognitive engine (COCE)

Kaleem Ahmad, G. Shrestha, U. Meier
{"title":"Coexistence optimized cognitive engine (COCE)","authors":"Kaleem Ahmad, G. Shrestha, U. Meier","doi":"10.1109/ETFA.2010.5641145","DOIUrl":null,"url":null,"abstract":"Cognitive radio (CR) is being envisioned as a promising technology to realize new strategies to combat with coexistence problems in wireless systems. Currently, opportunistic or dynamic spectrum access and transmission power control are popular coexistence optimization strategies among the CR research community. We propose a coexistence optimized cognitive engine (COCE), which combines machine learning with expert knowledge. COCE classifies coexisting radio systems using a fuzzy logic based signal classifier and in turn chooses suitable transmission parameters for the underlying radio platform from its knowledge base. Initially, we implement COCE as a TPC engine, which chooses the optimal transmission power for the underlying radio platform to ensure a desired quality-of-service. We implemented a testbed to demonstrate the performance of COCE using conventional microcontroller (μC) as well as super heterodyne transceivers and present the results in this contribution.","PeriodicalId":201440,"journal":{"name":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2010.5641145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cognitive radio (CR) is being envisioned as a promising technology to realize new strategies to combat with coexistence problems in wireless systems. Currently, opportunistic or dynamic spectrum access and transmission power control are popular coexistence optimization strategies among the CR research community. We propose a coexistence optimized cognitive engine (COCE), which combines machine learning with expert knowledge. COCE classifies coexisting radio systems using a fuzzy logic based signal classifier and in turn chooses suitable transmission parameters for the underlying radio platform from its knowledge base. Initially, we implement COCE as a TPC engine, which chooses the optimal transmission power for the underlying radio platform to ensure a desired quality-of-service. We implemented a testbed to demonstrate the performance of COCE using conventional microcontroller (μC) as well as super heterodyne transceivers and present the results in this contribution.
共存优化认知引擎(COCE)
认知无线电(CR)被认为是一种很有前途的技术,可以实现解决无线系统中共存问题的新策略。目前,机会性或动态频谱接入和传输功率控制是CR研究界普遍采用的共存优化策略。我们提出了一种共存优化的认知引擎(COCE),它将机器学习与专家知识相结合。COCE使用基于模糊逻辑的信号分类器对共存的无线电系统进行分类,然后从其知识库中选择适合底层无线电平台的传输参数。最初,我们将COCE实现为TPC引擎,它为底层无线电平台选择最佳传输功率,以确保所需的服务质量。我们实现了一个测试平台来演示COCE使用常规微控制器(μC)和超外差收发器的性能,并在本贡献中展示了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信