Classifying the Swallow Nest Quality Using Support Vector Machine Based on Computer Vision

Anindita Septiarini, Ferda Maulana, H. Hamdani, Rizqi Saputra, Tenia Wahyuningrum, Indra
{"title":"Classifying the Swallow Nest Quality Using Support Vector Machine Based on Computer Vision","authors":"Anindita Septiarini, Ferda Maulana, H. Hamdani, Rizqi Saputra, Tenia Wahyuningrum, Indra","doi":"10.1109/CyberneticsCom55287.2022.9865498","DOIUrl":null,"url":null,"abstract":"Swallow Nest is a valuable export commodity, particularly in Indonesia. It is produced when a swallow's saliva hardens and is frequently encountered in high-rise buildings. Swallow nests can be utilized to treat various ailments in the medical sector. The price of a swallow nest varies according to its quality, which is commonly classified into three grades: quality 1 (Q1), quality 2 (Q2), and quality 3 (Q3). Q1 is of the highest quality, while Q3 is of the lowest. Each grade has a different physical appearance. Currently, many people lack knowledge regarding the grade of a swallow nest. Therefore, a method is needed to automatically classify the quality of swallow nests based on computer vision. The proposed method consists of several main processes, including image acquisition, ROI detection, pre-processing, segmentation, feature extraction, and classification. The feature extraction was applied based on shapes, followed by the Support Vector Machine (SVM) implementation in the classification process. This process was performed with cross-validation using the k-fold values of 5. The performance evaluation was done using three parameters: precision, recall, and accuracy, by achieving the value of 90.6%, 89.3%, and 89.3%, respectively.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Swallow Nest is a valuable export commodity, particularly in Indonesia. It is produced when a swallow's saliva hardens and is frequently encountered in high-rise buildings. Swallow nests can be utilized to treat various ailments in the medical sector. The price of a swallow nest varies according to its quality, which is commonly classified into three grades: quality 1 (Q1), quality 2 (Q2), and quality 3 (Q3). Q1 is of the highest quality, while Q3 is of the lowest. Each grade has a different physical appearance. Currently, many people lack knowledge regarding the grade of a swallow nest. Therefore, a method is needed to automatically classify the quality of swallow nests based on computer vision. The proposed method consists of several main processes, including image acquisition, ROI detection, pre-processing, segmentation, feature extraction, and classification. The feature extraction was applied based on shapes, followed by the Support Vector Machine (SVM) implementation in the classification process. This process was performed with cross-validation using the k-fold values of 5. The performance evaluation was done using three parameters: precision, recall, and accuracy, by achieving the value of 90.6%, 89.3%, and 89.3%, respectively.
基于计算机视觉的支持向量机燕窝质量分类
燕窝是一种有价值的出口商品,特别是在印度尼西亚。它是燕子的唾液变硬时产生的,在高层建筑中经常遇到。在医疗领域,燕窝可以用来治疗各种疾病。燕窝的价格因其质量而异,通常分为三个等级:质量1 (Q1),质量2 (Q2)和质量3 (Q3)。Q1质量最高,Q3质量最低。每个年级都有不同的物理外观。目前,许多人对燕窝的等级缺乏了解。因此,需要一种基于计算机视觉的燕窝质量自动分类方法。该方法包括图像采集、感兴趣点检测、预处理、分割、特征提取和分类等几个主要过程。首先基于形状进行特征提取,然后在分类过程中使用支持向量机(SVM)实现。该过程使用k倍值5进行交叉验证。采用精密度、查全率和查准率3个参数进行性能评价,查全率分别为90.6%、89.3%和89.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信