Akin: Generating UI Wireframes From UI Design Patterns Using Deep Learning

Nishit Gajjar, Vinoth Pandian Sermuga Pandian, Sarah Suleri, M. Jarke
{"title":"Akin: Generating UI Wireframes From UI Design Patterns Using Deep Learning","authors":"Nishit Gajjar, Vinoth Pandian Sermuga Pandian, Sarah Suleri, M. Jarke","doi":"10.1145/3397482.3450727","DOIUrl":null,"url":null,"abstract":"During the User interface (UI) design process, designers use UI design patterns for conceptualizing different UI wireframes for an application. This paper introduces Akin, a UI wireframe generator that allows designers to chose a UI design pattern and provides them with multiple UI wireframes for a given UI design pattern. Akin uses a fine-tuned Self-Attention Generative Adversarial Network trained with 500 UI wireframes of 5 android UI design patterns. Upon evaluation, Akin’s generative model provides an Inception Score of 1.63 (SD=0.34) and Fréchet Inception Distance of 297.19. We further conducted user studies with 15 UI/UX designers to evaluate the quality of Akin-generated UI wireframes. The results show that UI/UX designers considered wireframes generated by Akin are as good as wireframes made by designers. Moreover, designers identified Akin-generated wireframes as designer-made 50% of the time. This paper provides a baseline for further research in UI wireframe generation by providing a baseline metric.","PeriodicalId":216190,"journal":{"name":"26th International Conference on Intelligent User Interfaces - Companion","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Intelligent User Interfaces - Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397482.3450727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

During the User interface (UI) design process, designers use UI design patterns for conceptualizing different UI wireframes for an application. This paper introduces Akin, a UI wireframe generator that allows designers to chose a UI design pattern and provides them with multiple UI wireframes for a given UI design pattern. Akin uses a fine-tuned Self-Attention Generative Adversarial Network trained with 500 UI wireframes of 5 android UI design patterns. Upon evaluation, Akin’s generative model provides an Inception Score of 1.63 (SD=0.34) and Fréchet Inception Distance of 297.19. We further conducted user studies with 15 UI/UX designers to evaluate the quality of Akin-generated UI wireframes. The results show that UI/UX designers considered wireframes generated by Akin are as good as wireframes made by designers. Moreover, designers identified Akin-generated wireframes as designer-made 50% of the time. This paper provides a baseline for further research in UI wireframe generation by providing a baseline metric.
类似:使用深度学习从UI设计模式生成UI线框图
在用户界面(UI)设计过程中,设计人员使用UI设计模式对应用程序的不同UI线框进行概念化。本文介绍了一个UI线框生成器Akin,它允许设计师选择一个UI设计模式,并为给定的UI设计模式提供多个UI线框。Akin使用了一个经过微调的自注意生成对抗网络,该网络由5种android UI设计模式的500个UI线框图训练而成。经评估,Akin的生成模型的Inception Score为1.63 (SD=0.34), fr Inception Distance为297.19。我们进一步与15名UI/UX设计师进行了用户研究,以评估akin生成的UI线框的质量。结果表明,UI/UX设计师认为由Akin生成的线框图与设计师制作的线框图一样好。此外,设计师在50%的时间里将akin生成的线框识别为设计师制作的。本文通过提供一个基线度量,为进一步研究UI线框生成提供了一个基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信