Improving the Diagnostic of Contrast Enhanced Ultrasound Imaging using Optical Flow for Focal Liver Lesion Detection

Cristina Laura Sîrbu, G. Simion, C. Căleanu
{"title":"Improving the Diagnostic of Contrast Enhanced Ultrasound Imaging using Optical Flow for Focal Liver Lesion Detection","authors":"Cristina Laura Sîrbu, G. Simion, C. Căleanu","doi":"10.1109/SYNASC57785.2022.00048","DOIUrl":null,"url":null,"abstract":"Our proposal aims an automatic method used for obtaining the ultrasound image of a region of interest based on the optical flow computation. Combined with a kernel correlation filter tracking algorithm and a Xception deep convolutional neural network architecture, our solution provides state-of-the-art results (over 90% accuracy) in the automatic diagnosis of liver lesion using contrast enhanced ultrasound.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our proposal aims an automatic method used for obtaining the ultrasound image of a region of interest based on the optical flow computation. Combined with a kernel correlation filter tracking algorithm and a Xception deep convolutional neural network architecture, our solution provides state-of-the-art results (over 90% accuracy) in the automatic diagnosis of liver lesion using contrast enhanced ultrasound.
提高超声造影光流对肝局灶性病变的诊断价值
我们提出了一种基于光流计算的自动获取感兴趣区域超声图像的方法。结合核相关滤波器跟踪算法和异常深度卷积神经网络架构,我们的解决方案在使用对比度增强超声自动诊断肝脏病变方面提供了最先进的结果(准确率超过90%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信