Some aspects of optimizing the power of a real heat engine

A. E. Roshdestvensky, A. Erokhin, M. Kazaryan
{"title":"Some aspects of optimizing the power of a real heat engine","authors":"A. E. Roshdestvensky, A. Erokhin, M. Kazaryan","doi":"10.1117/12.2550619","DOIUrl":null,"url":null,"abstract":"The efficiency of a real heat engines is considered. Basing on the entropy production minimum principle it is shown that the maximum efficiency of such a machine with an optimum power is n= 1-√T2/T1 defined by the root dependence of cooler and heater temperatures. This disappointing result was obtained earlier for the optimizing the power of Carnot cycle. In this paper we derive aforementioned expression from more general conditions. And we show that it is could be applicable to describe global changes in living and nonliving nature.","PeriodicalId":205170,"journal":{"name":"Atomic and Molecular Pulsed Lasers","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic and Molecular Pulsed Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2550619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency of a real heat engines is considered. Basing on the entropy production minimum principle it is shown that the maximum efficiency of such a machine with an optimum power is n= 1-√T2/T1 defined by the root dependence of cooler and heater temperatures. This disappointing result was obtained earlier for the optimizing the power of Carnot cycle. In this paper we derive aforementioned expression from more general conditions. And we show that it is could be applicable to describe global changes in living and nonliving nature.
优化实际热机功率的一些方面
考虑了实际热机的效率。根据熵产最小原理,证明了在最优功率下,这种机器的最大效率为n= 1-√T2/T1,这是由冷却器和加热器温度的根依赖关系定义的。这一令人失望的结果早在卡诺循环功率优化时就得到了。本文从更一般的条件推导出上述表达式。我们证明,它可以适用于描述生物和非生物自然界的全球变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信