A Multi-Source Collection of Event-Labeled News Documents

I. Mele, F. Crestani
{"title":"A Multi-Source Collection of Event-Labeled News Documents","authors":"I. Mele, F. Crestani","doi":"10.1145/3341981.3344253","DOIUrl":null,"url":null,"abstract":"In this paper, we present a collection of news documents labeled at the level of crisp events. Compared to other publicly-available collections, our dataset is made of heterogeneous documents published by popular news channels on different platforms in the same temporal window and, therefore, dealing with roughly the same events and topics. The collection spans 4 months and comprises 147K news documents from 27 news streams, i.e., 9 different channels and 3 platforms: Twitter, RSS portals, and news websites. We also provide relevance labels of news documents for some selected events. These relevance judgments were collected using crowdsourcing. The collection can be useful to researchers investigating challenging news-mining tasks, such as event detection and tracking, multi-stream analysis, and temporal analysis of news publishing patterns.","PeriodicalId":173154,"journal":{"name":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM SIGIR International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341981.3344253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present a collection of news documents labeled at the level of crisp events. Compared to other publicly-available collections, our dataset is made of heterogeneous documents published by popular news channels on different platforms in the same temporal window and, therefore, dealing with roughly the same events and topics. The collection spans 4 months and comprises 147K news documents from 27 news streams, i.e., 9 different channels and 3 platforms: Twitter, RSS portals, and news websites. We also provide relevance labels of news documents for some selected events. These relevance judgments were collected using crowdsourcing. The collection can be useful to researchers investigating challenging news-mining tasks, such as event detection and tracking, multi-stream analysis, and temporal analysis of news publishing patterns.
事件标记新闻文档的多源集合
在本文中,我们提出了一个新闻文档的集合标记在脆事件的水平。与其他公开可用的集合相比,我们的数据集是由不同平台上的流行新闻频道在同一时间窗口中发布的异构文档组成的,因此,处理大致相同的事件和主题。该收集历时4个月,包括来自27个新闻流的147K新闻文档,即9个不同的渠道和3个平台:Twitter, RSS门户和新闻网站。我们还为一些选定的事件提供新闻文档的相关标签。这些相关性判断是通过众包的方式收集的。该集合对于研究具有挑战性的新闻挖掘任务(如事件检测和跟踪、多流分析以及新闻发布模式的时间分析)的研究人员非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信