Convex analysis of discrete-time uncertain H/sub infinity / control problems

P. Peres, J. Geromel, S. R. Souza
{"title":"Convex analysis of discrete-time uncertain H/sub infinity / control problems","authors":"P. Peres, J. Geromel, S. R. Souza","doi":"10.1109/CDC.1991.261360","DOIUrl":null,"url":null,"abstract":"Two classical problems involving discrete-time systems are analyzed. The first one concerns the quadratic stabilizability with uncertainties in convex bounded domains, which naturally covers the important class of interval matrices. In that problem, there is no need to introduce any kind of matching conditions, which is an important improvement compared with other results available in the literature. The second problem is defined by simply adding to the first problem some prespecified closed-loop transfer function H/sub infinity / norm bound. Assuming the state is available for feedback, the geometry of both problems is thoroughly analyzed. They turn out to be convex on the parameter space.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Two classical problems involving discrete-time systems are analyzed. The first one concerns the quadratic stabilizability with uncertainties in convex bounded domains, which naturally covers the important class of interval matrices. In that problem, there is no need to introduce any kind of matching conditions, which is an important improvement compared with other results available in the literature. The second problem is defined by simply adding to the first problem some prespecified closed-loop transfer function H/sub infinity / norm bound. Assuming the state is available for feedback, the geometry of both problems is thoroughly analyzed. They turn out to be convex on the parameter space.<>
离散时间不确定H/次∞/控制问题的凸分析
分析了两个涉及离散时间系统的经典问题。第一类问题是关于凸有界区域上具有不确定性的二次稳定性问题,它自然地涵盖了重要的一类区间矩阵。在该问题中,不需要引入任何匹配条件,这与文献中已有的结果相比是一个重要的改进。第二个问题的定义是在第一个问题的基础上,简单地加上一个预定的闭环传递函数H/次无穷/范数界。假设状态可用于反馈,对这两个问题的几何结构进行了全面分析。它们在参数空间上是凸的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信