Constant-time Dynamic (Δ +1)-Coloring

M. Henzinger, Pan Peng
{"title":"Constant-time Dynamic (Δ +1)-Coloring","authors":"M. Henzinger, Pan Peng","doi":"10.1145/3501403","DOIUrl":null,"url":null,"abstract":"We give a fully dynamic (Las-Vegas style) algorithm with constant expected amortized time per update that maintains a proper (Δ +1)-vertex coloring of a graph with maximum degree at most Δ. This improves upon the previous O(log Δ)-time algorithm by Bhattacharya et al. (SODA 2018). Our algorithm uses an approach based on assigning random ranks to vertices and does not need to maintain a hierarchical graph decomposition. We show that our result does not only have optimal running time but is also optimal in the sense that already deciding whether a Δ-coloring exists in a dynamically changing graph with maximum degree at most Δ takes Ω (log n) time per operation.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We give a fully dynamic (Las-Vegas style) algorithm with constant expected amortized time per update that maintains a proper (Δ +1)-vertex coloring of a graph with maximum degree at most Δ. This improves upon the previous O(log Δ)-time algorithm by Bhattacharya et al. (SODA 2018). Our algorithm uses an approach based on assigning random ranks to vertices and does not need to maintain a hierarchical graph decomposition. We show that our result does not only have optimal running time but is also optimal in the sense that already deciding whether a Δ-coloring exists in a dynamically changing graph with maximum degree at most Δ takes Ω (log n) time per operation.
恒时动态(Δ +1)-着色
我们给出了一个完全动态的(Las-Vegas风格)算法,每次更新的期望平摊时间为常数,该算法保持了图的适当(Δ +1)顶点着色,最大程度不超过Δ。这改进了Bhattacharya等人(SODA 2018)之前的O(log Δ)时间算法。我们的算法使用了一种基于给顶点分配随机秩的方法,并且不需要维护分层图分解。我们表明,我们的结果不仅具有最佳的运行时间,而且在决定Δ-coloring是否存在于最大程度为Δ的动态变化图中,每次操作花费Ω (log n)时间的意义上也是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信