On the centralizers of monoids in clone theory

Hajime Machida, I. Rosenberg
{"title":"On the centralizers of monoids in clone theory","authors":"Hajime Machida, I. Rosenberg","doi":"10.1109/ISMVL.2003.1201421","DOIUrl":null,"url":null,"abstract":"For a set S of functions of k-valued logic, the centralizer S* is the set of functions which 'permute' with all functions in S. As a continuation of our previous work we study the centralizers for certain monoids consisting of unary functions. First we show that the centralizers of permutation groups are distinct to each other, and then characterize the centralizer of the alternating group. Next, for certain monoids whose centralizer is the smallest clone J/sub k/, we study the centralizers of some of its proper submonoids. In particular, we report the existence of a considerably small monoid whose centralizer is J/sub k/ as well.","PeriodicalId":434515,"journal":{"name":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2003.1201421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

For a set S of functions of k-valued logic, the centralizer S* is the set of functions which 'permute' with all functions in S. As a continuation of our previous work we study the centralizers for certain monoids consisting of unary functions. First we show that the centralizers of permutation groups are distinct to each other, and then characterize the centralizer of the alternating group. Next, for certain monoids whose centralizer is the smallest clone J/sub k/, we study the centralizers of some of its proper submonoids. In particular, we report the existence of a considerably small monoid whose centralizer is J/sub k/ as well.
克隆理论中一元群的中心器
对于k值逻辑函数集S,中心化器S*是与S中的所有函数“置换”的函数集。作为我们先前工作的延续,我们研究了由一元函数组成的某些单群的中心化器。我们首先证明了置换群的中心化因子是不同的,然后对置换群的中心化因子进行了刻画。其次,对于正形器为最小克隆J/下标k/的单群,我们研究了它的一些适当子单群的正形器。特别地,我们报告了一个相当小的单峰的存在,它的扶正器也是J/下标k/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信