Tongda Xu, Xiyan Cai, Yao Wang, X. Wang, Sohae Chung, E. Fieremans, J. Rath, S. Flanagan, Y. Lui
{"title":"Identification of Relevant Diffusion MRI Metrics Impacting Cognitive Functions Using a Novel Feature Selection Method","authors":"Tongda Xu, Xiyan Cai, Yao Wang, X. Wang, Sohae Chung, E. Fieremans, J. Rath, S. Flanagan, Y. Lui","doi":"10.1109/SPMB47826.2019.9037845","DOIUrl":null,"url":null,"abstract":"Mild Traumatic Brain Injury (mTBI) is a significant public health problem. The most troubling symptoms after mTBI are cognitive complaints. Studies show measurable differences between patients with mTBI and healthy controls with respect to tissue microstructure using diffusion MRI. However, it remains unclear which diffusion measures are the most informative with regard to cognitive functions in both the healthy state as well as after injury. In this study, we use diffusion MRI to formulate a predictive model for performance on working memory based on the most relevant MRI features. As exhaustive search is impractical, the key challenge is to identify relevant features over a large feature space with high accuracy within reasonable time-frame. To tackle this challenge, we propose a novel improvement of the best first search approach with crossover operators inspired by genetic algorithm. Compared against other heuristic feature selection algorithms, the proposed method achieves significantly more accurate predictions and yields clinically interpretable selected features (improvement of r2 in 8 of 9 cohorts and up to 0.08).","PeriodicalId":143197,"journal":{"name":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Signal Processing in Medicine and Biology Symposium (SPMB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPMB47826.2019.9037845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mild Traumatic Brain Injury (mTBI) is a significant public health problem. The most troubling symptoms after mTBI are cognitive complaints. Studies show measurable differences between patients with mTBI and healthy controls with respect to tissue microstructure using diffusion MRI. However, it remains unclear which diffusion measures are the most informative with regard to cognitive functions in both the healthy state as well as after injury. In this study, we use diffusion MRI to formulate a predictive model for performance on working memory based on the most relevant MRI features. As exhaustive search is impractical, the key challenge is to identify relevant features over a large feature space with high accuracy within reasonable time-frame. To tackle this challenge, we propose a novel improvement of the best first search approach with crossover operators inspired by genetic algorithm. Compared against other heuristic feature selection algorithms, the proposed method achieves significantly more accurate predictions and yields clinically interpretable selected features (improvement of r2 in 8 of 9 cohorts and up to 0.08).