Robust prediction for quality of industrial processes

Changxin Liu, Jinliang Ding, T. Chai
{"title":"Robust prediction for quality of industrial processes","authors":"Changxin Liu, Jinliang Ding, T. Chai","doi":"10.1109/ICINFA.2014.6932826","DOIUrl":null,"url":null,"abstract":"This paper proposes a new robust predictive approach for quality of industrial processes. It draws inspiration from robust AdaBoost for classification and expands to regression tasks. Existing classical AdaBoost for regression (AdaBoost.R2) constructs a strong learner in a stepwise fashion by re-weighting those instances according to their regression results at each iteration. In order to reduce its sensitivity to outliers, the proposed approach shows how the weight can be modified by a mixture of exponential updates with additional uniform weight for predictive problems. Experimental results using actual data from an ore-dressing production processes show its more robustness than existing methods even if a certain amount of data is infected.","PeriodicalId":427762,"journal":{"name":"2014 IEEE International Conference on Information and Automation (ICIA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2014.6932826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a new robust predictive approach for quality of industrial processes. It draws inspiration from robust AdaBoost for classification and expands to regression tasks. Existing classical AdaBoost for regression (AdaBoost.R2) constructs a strong learner in a stepwise fashion by re-weighting those instances according to their regression results at each iteration. In order to reduce its sensitivity to outliers, the proposed approach shows how the weight can be modified by a mixture of exponential updates with additional uniform weight for predictive problems. Experimental results using actual data from an ore-dressing production processes show its more robustness than existing methods even if a certain amount of data is infected.
工业过程质量的鲁棒预测
本文提出了一种新的工业过程质量鲁棒预测方法。它从强大的AdaBoost分类中汲取灵感,并扩展到回归任务。现有的经典AdaBoost回归算法(AdaBoost. r2)根据每次迭代的回归结果重新加权,逐步构建一个强学习器。为了降低其对异常值的敏感性,所提出的方法展示了如何通过混合指数更新和额外的均匀权重来修改预测问题的权重。利用某选矿生产过程的实际数据进行的实验结果表明,即使有一定数量的数据被感染,该方法也比现有方法具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信