{"title":"Multistage pattern recognition of signals represented in wavelet bases with reject option","authors":"Urszula Libal","doi":"10.1109/MMAR.2012.6347907","DOIUrl":null,"url":null,"abstract":"We propose a multistage pattern recognition algorithm with a reject option. On every stage, the presented algorithm chooses a class of signal or rejects the signal, i.e. refuses to make a decision. If a class is assigned to the signal on some stage, then the algorithm stops. In the opposite case of a signal rejection, the decision of assigning to a class is made on the next stage. The multiresolution signal representation in wavelet bases allows to take a more accurate signal representation on every following stage. Our approach saves the computation time, when the algorithm selects a class on an early stage basing on a coarse wavelet representation. If the inaccurate representation is insufficient to point out one of classes (e.g. when the a posteriori probability of every class is lower than a fixed bound, in case of Bayesian classifier), the reject option protects from choosing a wrong class. We show that a risk of misclassification for the Bayesian decision rule with a reject option is lower or equal to a risk of the one-stage optimal Bayesian rule.","PeriodicalId":305110,"journal":{"name":"2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2012.6347907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We propose a multistage pattern recognition algorithm with a reject option. On every stage, the presented algorithm chooses a class of signal or rejects the signal, i.e. refuses to make a decision. If a class is assigned to the signal on some stage, then the algorithm stops. In the opposite case of a signal rejection, the decision of assigning to a class is made on the next stage. The multiresolution signal representation in wavelet bases allows to take a more accurate signal representation on every following stage. Our approach saves the computation time, when the algorithm selects a class on an early stage basing on a coarse wavelet representation. If the inaccurate representation is insufficient to point out one of classes (e.g. when the a posteriori probability of every class is lower than a fixed bound, in case of Bayesian classifier), the reject option protects from choosing a wrong class. We show that a risk of misclassification for the Bayesian decision rule with a reject option is lower or equal to a risk of the one-stage optimal Bayesian rule.