Size Parameters Classification of Loop Current Model of PCB Traces by CNN of Magnetic Near-Field Distribution

S. Muroga, Taichi Sasaki, Hidefumi Kamozawa, Yusuke Sato, Takahiro Mikami, Motoshi Tanaka
{"title":"Size Parameters Classification of Loop Current Model of PCB Traces by CNN of Magnetic Near-Field Distribution","authors":"S. Muroga, Taichi Sasaki, Hidefumi Kamozawa, Yusuke Sato, Takahiro Mikami, Motoshi Tanaka","doi":"10.23919/apmc55665.2022.9999857","DOIUrl":null,"url":null,"abstract":"A method of an equivalent loop current modeling of printed circuit board traces and components on printed circuit boards was investigated. A microstrip line (MSL) and parallel lines are used as test benches. The loop current is one of common electromagnetic field source models, and is composed of a signal and a return current in this case. One-dimensional convolutional neural network (CNN) was used as a classifier to estimate the size parameters of the loop current model. The results show a feasibility and necessity for improvement of the equivalent loop current modeling by the machine learning of the near-field information.","PeriodicalId":219307,"journal":{"name":"2022 Asia-Pacific Microwave Conference (APMC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Microwave Conference (APMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/apmc55665.2022.9999857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A method of an equivalent loop current modeling of printed circuit board traces and components on printed circuit boards was investigated. A microstrip line (MSL) and parallel lines are used as test benches. The loop current is one of common electromagnetic field source models, and is composed of a signal and a return current in this case. One-dimensional convolutional neural network (CNN) was used as a classifier to estimate the size parameters of the loop current model. The results show a feasibility and necessity for improvement of the equivalent loop current modeling by the machine learning of the near-field information.
磁近场分布CNN对PCB走线回路电流模型的尺寸参数分类
研究了印刷电路板走线和电路板上元件的等效环路电流建模方法。微带线(MSL)和平行线作为试验台。回路电流是常见的电磁场源模型之一,在这种情况下,回路电流由一个信号和一个返回电流组成。使用一维卷积神经网络(CNN)作为分类器估计环路电流模型的大小参数。结果表明,利用近场信息的机器学习改进等效环路电流建模是可行的,也是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信