Digital arithmetic using analog arrays

S. Sadeghi-Emamchaie, G. Jullien, V. Dimitrov, W. Miller
{"title":"Digital arithmetic using analog arrays","authors":"S. Sadeghi-Emamchaie, G. Jullien, V. Dimitrov, W. Miller","doi":"10.1109/GLSV.1998.665226","DOIUrl":null,"url":null,"abstract":"This paper describes techniques for using locally connected analog cellular neural networks (CNNs) to implement digital arithmetic arrays; the arithmetic is implemented using a recently disclosed Double-Base Number System (DBNS). The CNN arrays are targeted for low power low-noise DSP applications where lower slew rate during transitions is a potential advantage. Specifically, we demonstrate that a CNN array, using a simple nonlinear feedback template, with hysteresis, can perform arbitrary length arithmetic with good performance in terms of stability and robustness. The principles presented in this paper can also be used to implement arithmetic in other number systems such as the binary number system.","PeriodicalId":225107,"journal":{"name":"Proceedings of the 8th Great Lakes Symposium on VLSI (Cat. No.98TB100222)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th Great Lakes Symposium on VLSI (Cat. No.98TB100222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLSV.1998.665226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper describes techniques for using locally connected analog cellular neural networks (CNNs) to implement digital arithmetic arrays; the arithmetic is implemented using a recently disclosed Double-Base Number System (DBNS). The CNN arrays are targeted for low power low-noise DSP applications where lower slew rate during transitions is a potential advantage. Specifically, we demonstrate that a CNN array, using a simple nonlinear feedback template, with hysteresis, can perform arbitrary length arithmetic with good performance in terms of stability and robustness. The principles presented in this paper can also be used to implement arithmetic in other number systems such as the binary number system.
使用模拟阵列的数字算法
本文描述了使用局部连接的模拟细胞神经网络(cnn)实现数字算术数组的技术;该算法使用最近公开的双基数系统(DBNS)实现。CNN阵列的目标是低功耗、低噪声的DSP应用,在这些应用中,转换期间较低的摆压率是一个潜在的优势。具体来说,我们证明了一个CNN阵列,使用一个简单的非线性反馈模板,具有滞后,可以执行任意长度的算法,在稳定性和鲁棒性方面具有良好的性能。本文提出的原理也可用于实现其他数字系统中的算术,如二进制数系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信