Malte Breuer, Andreas Klinger, T. Schneider, Ulrike Meyer
{"title":"Secure Maximum Weight Matching Approximation on General Graphs","authors":"Malte Breuer, Andreas Klinger, T. Schneider, Ulrike Meyer","doi":"10.1145/3559613.3563209","DOIUrl":null,"url":null,"abstract":"Privacy-preserving protocols for matchings on general graphs can be used for applications such as online dating, bartering, or kidney donor exchange. In addition, they can act as a building block for more complex protocols. While privacy-preserving protocols for matchings on bipartite graphs are a well-researched topic, the case of general graphs has experienced significantly less attention so far. We address this gap by providing the first privacy-preserving protocol for maximum weight matching on general graphs. To maximize the scalability of our approach, we compute an 1/2-approximation instead of an exact solution. For N nodes, our protocol requires O(N log N) rounds, O(N^3) communication, and runs in only 12.5 minutes for N=400.","PeriodicalId":416548,"journal":{"name":"Proceedings of the 21st Workshop on Privacy in the Electronic Society","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Workshop on Privacy in the Electronic Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3559613.3563209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Privacy-preserving protocols for matchings on general graphs can be used for applications such as online dating, bartering, or kidney donor exchange. In addition, they can act as a building block for more complex protocols. While privacy-preserving protocols for matchings on bipartite graphs are a well-researched topic, the case of general graphs has experienced significantly less attention so far. We address this gap by providing the first privacy-preserving protocol for maximum weight matching on general graphs. To maximize the scalability of our approach, we compute an 1/2-approximation instead of an exact solution. For N nodes, our protocol requires O(N log N) rounds, O(N^3) communication, and runs in only 12.5 minutes for N=400.