{"title":"Rayleigh waves in compressible orthotropic half-space overlaid by a thin un-coaxial orthotropic layer","authors":"T. T. Hue, Phan Thi Hoai Phuong, P. H. Anh","doi":"10.31814/stce.huce(nuce)2021-15(4)-05","DOIUrl":null,"url":null,"abstract":"The problem of Rayleigh waves in compressible orthotropic elastic half-space overlaid by a thin elastic layer of which principal material axes are coincident have been researched by many scientists. However, the problem with the conditions that the half-space and the layer have only one common principal material axis that perpendicular to the layer while the remains are not identical has not gotten enough attention. This paper presents a traditional approach to obtain an approximate secular equation by approximately replacing the thin layer by effective boundary conditions of third-order. The wave then is considered as a Rayleigh wave propagating in an orthotropic half-space, without coating, subjected to the effective boundary conditions. This explicit approximate secular equation is potentially useful in non-damage assessment studies.","PeriodicalId":387908,"journal":{"name":"Journal of Science and Technology in Civil Engineering (STCE) - HUCE","volume":"348 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Technology in Civil Engineering (STCE) - HUCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31814/stce.huce(nuce)2021-15(4)-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of Rayleigh waves in compressible orthotropic elastic half-space overlaid by a thin elastic layer of which principal material axes are coincident have been researched by many scientists. However, the problem with the conditions that the half-space and the layer have only one common principal material axis that perpendicular to the layer while the remains are not identical has not gotten enough attention. This paper presents a traditional approach to obtain an approximate secular equation by approximately replacing the thin layer by effective boundary conditions of third-order. The wave then is considered as a Rayleigh wave propagating in an orthotropic half-space, without coating, subjected to the effective boundary conditions. This explicit approximate secular equation is potentially useful in non-damage assessment studies.