Exact penalties for decomposable convex optimization problems

I. Konnov
{"title":"Exact penalties for decomposable convex optimization problems","authors":"I. Konnov","doi":"10.1080/10556788.2021.1977807","DOIUrl":null,"url":null,"abstract":"We consider a general decomposable convex optimization problem. By using right-hand side allocation technique, it can be transformed into a collection of small dimensional optimization problems. The master problem is a convex non-smooth optimization problem. We propose to apply the exact non-smooth penalty method, which gives a solution of the initial problem under some fixed penalty parameter and provides the consistency of lower level problems. The master problem can be solved with a suitable non-smooth optimization method. The simplest of them is the custom subgradient projection method using the divergent series step-size rule without line-search, whose convergence may be, however, rather low. We suggest to enhance its step-size selection by using a two-speed rule. Preliminary results of computational experiments confirm efficiency of this technique.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2021.1977807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a general decomposable convex optimization problem. By using right-hand side allocation technique, it can be transformed into a collection of small dimensional optimization problems. The master problem is a convex non-smooth optimization problem. We propose to apply the exact non-smooth penalty method, which gives a solution of the initial problem under some fixed penalty parameter and provides the consistency of lower level problems. The master problem can be solved with a suitable non-smooth optimization method. The simplest of them is the custom subgradient projection method using the divergent series step-size rule without line-search, whose convergence may be, however, rather low. We suggest to enhance its step-size selection by using a two-speed rule. Preliminary results of computational experiments confirm efficiency of this technique.
可分解凸优化问题的精确惩罚
考虑一类一般可分解凸优化问题。利用右侧分配技术,可以将其转化为小维度优化问题的集合。主问题是一个凸非光滑优化问题。我们提出应用精确非光滑惩罚方法,它给出了初始问题在某些固定惩罚参数下的解,并提供了低级问题的一致性。采用合适的非光滑优化方法求解主问题。其中最简单的是使用发散级数步长规则的自定义子梯度投影法,不需要线搜索,但其收敛性可能较低。我们建议使用双速规则来增强其步长选择。初步的计算实验结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信