Denoising Dolphin Click Series in the Presence of Tonals, using Singular Spectrum Analysis and Higher Order Statistics

P. Seekings, J. Tan, J. Potter, M. Hoffman-Kuhnt, A. Pack, L. Herman
{"title":"Denoising Dolphin Click Series in the Presence of Tonals, using Singular Spectrum Analysis and Higher Order Statistics","authors":"P. Seekings, J. Tan, J. Potter, M. Hoffman-Kuhnt, A. Pack, L. Herman","doi":"10.1109/OCEANSAP.2006.4393911","DOIUrl":null,"url":null,"abstract":"We examine the use of Singular Spectrum Analysis (SSA) technique as an alternative technique to using standard wavelet shrinkage schemes for the purpose of de-noising mixtures of tonals, transients and Gaussian noise. Wavelet schemes require a calculation of a threshold to determine which components are taken to be signal and noise. If the noise component is Gaussian, then threshold can be determined by using an appropriate estimator. However, in the presence of strong tonal content the Gaussian threshold estimators do not give optimal performance. One method is to iteratively shift the threshold until some performance criterion has been maximized. However this frequently leads to over de-noising this time series. Since the wavelet basis is chosen to best represent the signal of interest, over de-noising can cause artifacts to appear similar to the signal of interest. In most applications this can not be tolerated. SSA has advantages in that the basis of decomposition is derived from the time series itself. So-called Empirical Orthogonal Functions (EOFs) are derived from a lag matrix created from the time series. Singular Value Decomposition (SVD) is then used to decompose a time series into a number of time series components. In the case of signal separation or de-noising the time series components can be combined by using their statistical properties. We examine the use of higher order statistics, to group components into tonals, transient, and Gaussian noise. By using the properties of the kurtosis for these three types of signal, the grouping of components can be done in a more formal manner, than the thresholding technique found in wavelet schemes. The technique is demonstrated on test data consisting of dolphin clicks in the presence of tonal and Gaussian noise. Results are also shown for real data of a dolphin click series while echo-locating on a target. It is critical for future work that after de-noising, the shape of the dolphin clicks is preserved, and the recorded reflections from the target are adequately de-noised, without introducing artifacts which could be mistaken for reflections. We discuss the results of the SSA and evaluate its potential for de-noising applications.","PeriodicalId":268341,"journal":{"name":"OCEANS 2006 - Asia Pacific","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2006 - Asia Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSAP.2006.4393911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We examine the use of Singular Spectrum Analysis (SSA) technique as an alternative technique to using standard wavelet shrinkage schemes for the purpose of de-noising mixtures of tonals, transients and Gaussian noise. Wavelet schemes require a calculation of a threshold to determine which components are taken to be signal and noise. If the noise component is Gaussian, then threshold can be determined by using an appropriate estimator. However, in the presence of strong tonal content the Gaussian threshold estimators do not give optimal performance. One method is to iteratively shift the threshold until some performance criterion has been maximized. However this frequently leads to over de-noising this time series. Since the wavelet basis is chosen to best represent the signal of interest, over de-noising can cause artifacts to appear similar to the signal of interest. In most applications this can not be tolerated. SSA has advantages in that the basis of decomposition is derived from the time series itself. So-called Empirical Orthogonal Functions (EOFs) are derived from a lag matrix created from the time series. Singular Value Decomposition (SVD) is then used to decompose a time series into a number of time series components. In the case of signal separation or de-noising the time series components can be combined by using their statistical properties. We examine the use of higher order statistics, to group components into tonals, transient, and Gaussian noise. By using the properties of the kurtosis for these three types of signal, the grouping of components can be done in a more formal manner, than the thresholding technique found in wavelet schemes. The technique is demonstrated on test data consisting of dolphin clicks in the presence of tonal and Gaussian noise. Results are also shown for real data of a dolphin click series while echo-locating on a target. It is critical for future work that after de-noising, the shape of the dolphin clicks is preserved, and the recorded reflections from the target are adequately de-noised, without introducing artifacts which could be mistaken for reflections. We discuss the results of the SSA and evaluate its potential for de-noising applications.
用奇异谱分析和高阶统计量去噪存在音调的海豚声序列
我们研究了奇异谱分析(SSA)技术的使用,作为使用标准小波收缩方案的替代技术,用于去噪音调,瞬态和高斯噪声的混合。小波方案需要计算一个阈值,以确定哪些成分被视为信号和噪声。如果噪声成分是高斯的,那么阈值可以通过使用适当的估计器来确定。然而,在存在强色调内容的情况下,高斯阈值估计器不能给出最佳性能。一种方法是迭代地移动阈值,直到某个性能标准达到最大值。然而,这经常导致该时间序列的过度去噪。由于选择小波基是为了最好地表示感兴趣的信号,因此过度去噪可能导致伪影看起来与感兴趣的信号相似。在大多数应用程序中,这是不能容忍的。SSA的优点在于分解的基础是由时间序列本身推导出来的。所谓的经验正交函数(EOFs)是由时间序列产生的滞后矩阵推导出来的。然后使用奇异值分解(SVD)将时间序列分解为许多时间序列分量。在信号分离或去噪的情况下,可以利用时间序列分量的统计特性将它们组合起来。我们研究了使用高阶统计量,将成分分为音调,瞬态和高斯噪声。通过使用这三种类型信号的峰度特性,可以以比小波方案中的阈值技术更正式的方式对分量进行分组。该技术在有音调噪声和高斯噪声的海豚声测试数据上得到了验证。并给出了海豚回声定位时的实际数据。在去噪之后,保留海豚咔哒声的形状,并对目标记录的反射进行充分的去噪,而不会引入可能被误认为反射的人工制品,这对未来的工作至关重要。我们讨论了SSA的结果,并评估了其去噪应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信