Zero-Crossing Analysis of Lévy Walks and a DDoS Dataset for Real-Time Feature Extraction

J. D. T. Gonzalez, W. Kinsner
{"title":"Zero-Crossing Analysis of Lévy Walks and a DDoS Dataset for Real-Time Feature Extraction","authors":"J. D. T. Gonzalez, W. Kinsner","doi":"10.4018/978-1-7998-5348-0.ch021","DOIUrl":null,"url":null,"abstract":"A comparison between the probability similarities of a Distributed Denial-of-Service (DDoS) dataset and Lévy walks is presented. This effort validates Lévy walks as a model resembling DDoS probability features. In addition, a method, based on the Smirnov transform, for generating synthetic data with the statistical properties of Lévy-walks is demonstrated. The Smirnov transform is used to address a cybersecurity problem associated with the Internet-of-things (IoT). The synthetic Lévy-walk is merged with sections of distinct signals (uniform noise, Gaussian noise, and an ordinary sinusoid). Zero-crossing rate (ZCR) within a varying-size window is utilized to analyze both the composite signal and the DDoS dataset. ZCR identifies all the distinct sections in the composite signal and successfully detects the occurrence of the cyberattack. The ZCR value increases as the signal under analysis becomes more complex and produces steadier values as the varying window size increases. The ZCR computation directly in the time-domain is its most notorious advantage for real-time implementations.","PeriodicalId":417372,"journal":{"name":"Research Anthology on Combating Denial-of-Service Attacks","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Combating Denial-of-Service Attacks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-5348-0.ch021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A comparison between the probability similarities of a Distributed Denial-of-Service (DDoS) dataset and Lévy walks is presented. This effort validates Lévy walks as a model resembling DDoS probability features. In addition, a method, based on the Smirnov transform, for generating synthetic data with the statistical properties of Lévy-walks is demonstrated. The Smirnov transform is used to address a cybersecurity problem associated with the Internet-of-things (IoT). The synthetic Lévy-walk is merged with sections of distinct signals (uniform noise, Gaussian noise, and an ordinary sinusoid). Zero-crossing rate (ZCR) within a varying-size window is utilized to analyze both the composite signal and the DDoS dataset. ZCR identifies all the distinct sections in the composite signal and successfully detects the occurrence of the cyberattack. The ZCR value increases as the signal under analysis becomes more complex and produces steadier values as the varying window size increases. The ZCR computation directly in the time-domain is its most notorious advantage for real-time implementations.
lsamvy行走的过零分析及实时特征提取的DDoS数据集
比较了分布式拒绝服务(DDoS)数据集和lsamvy游动的概率相似性。这项工作验证了lsamvy游动是一种类似于DDoS概率特征的模型。此外,本文还给出了一种基于Smirnov变换的合成数据的生成方法,该方法具有lsamv -walks的统计特性。斯米尔诺夫变换用于解决与物联网(IoT)相关的网络安全问题。合成的lsamv -walk与不同信号(均匀噪声、高斯噪声和普通正弦波)的部分合并。利用变大小窗口内的过零率(ZCR)来分析复合信号和DDoS数据集。ZCR识别复合信号中所有不同的部分,并成功检测到网络攻击的发生。ZCR值随着分析的信号变得更复杂而增加,随着窗口大小的变化而产生更稳定的值。直接在时域进行ZCR计算是其实时实现的最大优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信