Time-stepping methods for constructing periodic solutions in maximally monotone set-valued dynamical systems

W. Heemels, Valentina Sessa, F. Vasca, M. Camlibel
{"title":"Time-stepping methods for constructing periodic solutions in maximally monotone set-valued dynamical systems","authors":"W. Heemels, Valentina Sessa, F. Vasca, M. Camlibel","doi":"10.1109/CDC.2014.7039866","DOIUrl":null,"url":null,"abstract":"In this paper we study a class of set-valued dynamical systems that satisfy maximal monotonicity properties. This class includes linear relay systems, linear complementarity systems, and linear mechanical systems with dry friction under certain conditions. We discuss two numerical time-stepping schemes for the computation of periodic solutions of these systems when being periodically excited. For these two schemes we will provide formal mathematical justifications and compare them in terms of approximation accuracy and computation time using a numerical example.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7039866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we study a class of set-valued dynamical systems that satisfy maximal monotonicity properties. This class includes linear relay systems, linear complementarity systems, and linear mechanical systems with dry friction under certain conditions. We discuss two numerical time-stepping schemes for the computation of periodic solutions of these systems when being periodically excited. For these two schemes we will provide formal mathematical justifications and compare them in terms of approximation accuracy and computation time using a numerical example.
构造极大单调集值动力系统周期解的时间步进方法
本文研究了一类满足极大单调性的集值动力系统。本类包括线性继电器系统、线性互补系统和在一定条件下具有干摩擦的线性机械系统。讨论了在周期激励下计算这些系统周期解的两种数值时间步进格式。对于这两种方案,我们将提供形式化的数学证明,并使用数值示例在近似精度和计算时间方面对它们进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信