W. Heemels, Valentina Sessa, F. Vasca, M. Camlibel
{"title":"Time-stepping methods for constructing periodic solutions in maximally monotone set-valued dynamical systems","authors":"W. Heemels, Valentina Sessa, F. Vasca, M. Camlibel","doi":"10.1109/CDC.2014.7039866","DOIUrl":null,"url":null,"abstract":"In this paper we study a class of set-valued dynamical systems that satisfy maximal monotonicity properties. This class includes linear relay systems, linear complementarity systems, and linear mechanical systems with dry friction under certain conditions. We discuss two numerical time-stepping schemes for the computation of periodic solutions of these systems when being periodically excited. For these two schemes we will provide formal mathematical justifications and compare them in terms of approximation accuracy and computation time using a numerical example.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7039866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we study a class of set-valued dynamical systems that satisfy maximal monotonicity properties. This class includes linear relay systems, linear complementarity systems, and linear mechanical systems with dry friction under certain conditions. We discuss two numerical time-stepping schemes for the computation of periodic solutions of these systems when being periodically excited. For these two schemes we will provide formal mathematical justifications and compare them in terms of approximation accuracy and computation time using a numerical example.