Automatic Manifesto Comparison using NLP Techniques and The Manifesto Project Domains - Case Study: 2021 Ecuadorian Presidential Elections

Mike Pinta, Pablo Medina-Pérez, Daniel Riofrío, Noel Pérez, D. Benítez, Ricardo Flores Moyano
{"title":"Automatic Manifesto Comparison using NLP Techniques and The Manifesto Project Domains - Case Study: 2021 Ecuadorian Presidential Elections","authors":"Mike Pinta, Pablo Medina-Pérez, Daniel Riofrío, Noel Pérez, D. Benítez, Ricardo Flores Moyano","doi":"10.1109/ETCM53643.2021.9590825","DOIUrl":null,"url":null,"abstract":"Democracies rely on the capability of a country to conduct fair elections. And, fair elections rely on an open participation of candidates and general public. In particular, we explore a way to compare campaign proposals aiding general public to make an informed decision while choosing candidates. This document explores a way to compare campaign proposals through each candidate manifest using natural language processing techniques (i.e. Doc2Vec algorithm). As a linguistic corpus we used all the articles written in Spanish from Wikipedia and we used two models of neural networks, Distributed Bag of Words (DBOW) and Distributed Memory Model (DM). We chose the 2021 Ecuadorian Presidential Elections in its second round and tagged each manifesto paragraph (from the runoff candidates) into the seven domains according to the Manifesto Project. Finally, we compute manifesto comparisons by topic and also as a whole for different vector configurations. Our results indicate that Doc2Vec produces reasonable results while comparing documents but the DBOW model provides better results while dealing with larger documents and the DM model while dealing with smaller ones.","PeriodicalId":438567,"journal":{"name":"2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM53643.2021.9590825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Democracies rely on the capability of a country to conduct fair elections. And, fair elections rely on an open participation of candidates and general public. In particular, we explore a way to compare campaign proposals aiding general public to make an informed decision while choosing candidates. This document explores a way to compare campaign proposals through each candidate manifest using natural language processing techniques (i.e. Doc2Vec algorithm). As a linguistic corpus we used all the articles written in Spanish from Wikipedia and we used two models of neural networks, Distributed Bag of Words (DBOW) and Distributed Memory Model (DM). We chose the 2021 Ecuadorian Presidential Elections in its second round and tagged each manifesto paragraph (from the runoff candidates) into the seven domains according to the Manifesto Project. Finally, we compute manifesto comparisons by topic and also as a whole for different vector configurations. Our results indicate that Doc2Vec produces reasonable results while comparing documents but the DBOW model provides better results while dealing with larger documents and the DM model while dealing with smaller ones.
使用NLP技术和宣言项目领域的自动宣言比较-案例研究:2021年厄瓜多尔总统选举
民主依赖于一个国家进行公平选举的能力。公平的选举依赖于候选人和公众的公开参与。特别是,我们探索了一种比较竞选提案的方法,帮助公众在选择候选人时做出明智的决定。本文档探讨了一种使用自然语言处理技术(即Doc2Vec算法)通过每个候选人清单比较竞选提案的方法。作为语言语料库,我们使用了维基百科上所有的西班牙语文章,我们使用了两种神经网络模型,分布式词包(DBOW)和分布式记忆模型(DM)。我们选择了2021年厄瓜多尔总统选举的第二轮选举,并根据宣言项目将每个宣言段落(来自决选候选人)标记为七个领域。最后,我们按主题计算宣言比较,也作为一个整体计算不同向量配置的宣言比较。我们的研究结果表明,Doc2Vec模型在比较文档时产生了合理的结果,但DBOW模型在处理较大的文档时提供了更好的结果,DM模型在处理较小的文档时提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信