C

J. Bruursema, M. Meixner, K. Long, M. Otsuka
{"title":"C","authors":"J. Bruursema, M. Meixner, K. Long, M. Otsuka","doi":"10.1515/9783112467145-012","DOIUrl":null,"url":null,"abstract":"We discuss cross-field diffusion of energetic particles using compressional and noncompressional two-dimensional turbulence models by performing test particle simulations. For both models, the diffusion coefficient, defined in the classical way, exhibits a timescale dependence, suggesting that the underlining physical process should be described by Lévy statistics. The diffusion coefficient for long timescales is classified in terms of the Kubo number, K = bL⊥/ρ, where b is the standard deviation of magnetic field fluctuation in units of the background field, ρ is the particle Larmor raduis, and L⊥ is the field turbulence scale length. While the well-known JKG theorem predicts that a particle cannot move more than about one gyroradius normal to the magnetic field in a system with two or less spatial dimensions, the cross-field diffusion does take place in our models since they are exceptions to the theorem: we argue that particle motion on the flux surface is not prohibited in general, and in particular, it is not bounded when the background magnetic field is exactly parallel to the ignorable coordinate.","PeriodicalId":328839,"journal":{"name":"Kürschners Deutscher Literatur-Kalender (1928)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1928-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kürschners Deutscher Literatur-Kalender (1928)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9783112467145-012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss cross-field diffusion of energetic particles using compressional and noncompressional two-dimensional turbulence models by performing test particle simulations. For both models, the diffusion coefficient, defined in the classical way, exhibits a timescale dependence, suggesting that the underlining physical process should be described by Lévy statistics. The diffusion coefficient for long timescales is classified in terms of the Kubo number, K = bL⊥/ρ, where b is the standard deviation of magnetic field fluctuation in units of the background field, ρ is the particle Larmor raduis, and L⊥ is the field turbulence scale length. While the well-known JKG theorem predicts that a particle cannot move more than about one gyroradius normal to the magnetic field in a system with two or less spatial dimensions, the cross-field diffusion does take place in our models since they are exceptions to the theorem: we argue that particle motion on the flux surface is not prohibited in general, and in particular, it is not bounded when the background magnetic field is exactly parallel to the ignorable coordinate.
C
我们利用压缩和非压缩二维湍流模型,通过测试粒子模拟来讨论高能粒子的跨场扩散。对于这两个模型,以经典方式定义的扩散系数表现出时间尺度依赖性,这表明主要的物理过程应该由lsamvy统计来描述。长时间尺度的扩散系数是根据Kubo数分类的,K = bL⊥/ρ,其中b是以背景场为单位的磁场波动的标准差,ρ是粒子Larmor半径,而L⊥是场湍流尺度长度。众所周知的JKG定理预测,在一个具有两个或更少空间维度的系统中,一个粒子不能移动超过一个与磁场垂直的陀螺半径,但我们的模型中确实发生了跨场扩散,因为它们是该定理的例外:我们认为,粒子在通量表面上的运动通常是不被禁止的,特别是,当背景磁场与可忽略的坐标完全平行时,它是没有边界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信