{"title":"PokerBot: Hand Strength Reinforcement Learning","authors":"Angela Ramirez, Solomon Reinman, Narges Norouzi","doi":"10.1109/INISTA.2019.8778267","DOIUrl":null,"url":null,"abstract":"We sought to explore the problem of teaching a reinforcement learning agent how to play Texas Hold ‘Em (THE), a popular poker game played with a standard 52-card deck. This is an interesting problem because THE, and poker in general, is an incomplete information game in which the best strategy must take into account a significant amount of uncertainty, and for which the input vector of relevant information could be potentially very large. The final product of our research is a simplistic but elegant application of reinforcement learning, with various approaches yielding promising results within the context of THE.","PeriodicalId":262143,"journal":{"name":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2019.8778267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We sought to explore the problem of teaching a reinforcement learning agent how to play Texas Hold ‘Em (THE), a popular poker game played with a standard 52-card deck. This is an interesting problem because THE, and poker in general, is an incomplete information game in which the best strategy must take into account a significant amount of uncertainty, and for which the input vector of relevant information could be potentially very large. The final product of our research is a simplistic but elegant application of reinforcement learning, with various approaches yielding promising results within the context of THE.