Fast Robust Principle Component Analysis Using Gauss-Newton Iterations

William Chettleburgh, Zhishen Huang, Ming-Hsuan Yang
{"title":"Fast Robust Principle Component Analysis Using Gauss-Newton Iterations","authors":"William Chettleburgh, Zhishen Huang, Ming-Hsuan Yang","doi":"10.1109/ICASSP49357.2023.10096269","DOIUrl":null,"url":null,"abstract":"Robust Principal Component Analysis (RPCA) is an optimization problem that decomposes a data matrix into a low-rank and a sparse matrix. However, solving this problem using alternating procedures requires sequentially computing singular value decompositions (SVDs) of large matrices, which is computationally expensive. In this work, we propose a computation protocol that leverages Gauss-Newton iterations to speed up the sequential computation of SVDs and accelerate the entire RPCA process. Our method is validated on synthetic and video data, benchmarked against established RPCA algorithms, and analyzed for stability with respect to hyperparameters. Our proposed protocol can also be applied to problems that require repeated computation of the proximal of functions that solely depend on singular values of the input matrix.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Robust Principal Component Analysis (RPCA) is an optimization problem that decomposes a data matrix into a low-rank and a sparse matrix. However, solving this problem using alternating procedures requires sequentially computing singular value decompositions (SVDs) of large matrices, which is computationally expensive. In this work, we propose a computation protocol that leverages Gauss-Newton iterations to speed up the sequential computation of SVDs and accelerate the entire RPCA process. Our method is validated on synthetic and video data, benchmarked against established RPCA algorithms, and analyzed for stability with respect to hyperparameters. Our proposed protocol can also be applied to problems that require repeated computation of the proximal of functions that solely depend on singular values of the input matrix.
基于高斯-牛顿迭代的快速鲁棒主成分分析
鲁棒主成分分析是将数据矩阵分解为低秩矩阵和稀疏矩阵的优化问题。然而,使用交替过程解决该问题需要顺序计算大矩阵的奇异值分解(svd),这在计算上是昂贵的。在这项工作中,我们提出了一种利用高斯-牛顿迭代来加速svd的顺序计算并加速整个RPCA过程的计算协议。我们的方法在合成数据和视频数据上进行了验证,对已建立的RPCA算法进行了基准测试,并对超参数进行了稳定性分析。我们提出的协议也可以应用于需要重复计算仅依赖于输入矩阵的奇异值的函数的近邻的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信