Complex exponential signal angle estimation based on angle invariant combiner

V. Stankovic
{"title":"Complex exponential signal angle estimation based on angle invariant combiner","authors":"V. Stankovic","doi":"10.5937/spsunp1902107s","DOIUrl":null,"url":null,"abstract":"In order to achieve estimation performance limits, we often need to use computationally demanding estimation algorithms and/or signal information of higher order such as cumulants. Our goal is to reduce the computational complexity of angle estimation, and to achieve the Cramer-Rao estimation bound, and the maximum-likelihood signal-to-noise ratio threshold by using iterative estimation where the most computationally demanding processing is done as much as possible in the initialisation step, while in each iteration we require less complex processing. This is achieved by using the angle invariant combinations of signal autocorrelation samples for estimation.","PeriodicalId":394770,"journal":{"name":"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/spsunp1902107s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to achieve estimation performance limits, we often need to use computationally demanding estimation algorithms and/or signal information of higher order such as cumulants. Our goal is to reduce the computational complexity of angle estimation, and to achieve the Cramer-Rao estimation bound, and the maximum-likelihood signal-to-noise ratio threshold by using iterative estimation where the most computationally demanding processing is done as much as possible in the initialisation step, while in each iteration we require less complex processing. This is achieved by using the angle invariant combinations of signal autocorrelation samples for estimation.
基于角度不变组合器的复指数信号角度估计
为了达到估计性能极限,我们经常需要使用计算要求高的估计算法和/或高阶的信号信息,如累积量。我们的目标是降低角度估计的计算复杂度,并通过使用迭代估计来实现Cramer-Rao估计界和最大似然信噪比阈值,其中在初始化步骤中尽可能多地完成计算量最大的处理,而在每次迭代中我们需要较少的复杂处理。这是通过使用信号自相关样本的角度不变组合进行估计来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信