MMSE decoding for vector quantization over channels with memory

Heng-Iang Hsu, Wen-Whei Chang, Xiaobei Liu, S. Koh
{"title":"MMSE decoding for vector quantization over channels with memory","authors":"Heng-Iang Hsu, Wen-Whei Chang, Xiaobei Liu, S. Koh","doi":"10.1109/SCW.2002.1215728","DOIUrl":null,"url":null,"abstract":"The paper presents memory-enhanced extensions of minimum mean-squared error (MMSE) decoding for vector quantization over noisy channels. We also develop a recursive algorithm for computing the transition probabilities of the Gilbert channel, and illustrate its performance in vector quantization of Gauss-Markov sources under noisy channel conditions. Simulation results indicate that the proposed algorithm enables the implementation of an MMSE decoder with increased robustness to channel errors.","PeriodicalId":140750,"journal":{"name":"Speech Coding, 2002, IEEE Workshop Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Coding, 2002, IEEE Workshop Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCW.2002.1215728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper presents memory-enhanced extensions of minimum mean-squared error (MMSE) decoding for vector quantization over noisy channels. We also develop a recursive algorithm for computing the transition probabilities of the Gilbert channel, and illustrate its performance in vector quantization of Gauss-Markov sources under noisy channel conditions. Simulation results indicate that the proposed algorithm enables the implementation of an MMSE decoder with increased robustness to channel errors.
MMSE解码的矢量量化在信道与存储器
本文提出了一种基于最小均方误差(MMSE)译码的增强存储扩展,用于噪声信道上的矢量量化。我们还开发了一种计算吉尔伯特信道转移概率的递归算法,并说明了它在噪声信道条件下高斯-马尔可夫源矢量量化中的性能。仿真结果表明,该算法使MMSE解码器对信道误差的鲁棒性提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信