{"title":"Comparison of conventional & fuzzy based sliding mode PID controller for robot manipulator","authors":"Dhaval R Vyas, J. Ohri, Ankit A. Patel","doi":"10.1109/ICBR.2013.6729269","DOIUrl":null,"url":null,"abstract":"High accuracy trajectory tracking is challenging topic in robotic manipulator control. This is due to nonlinearities and input coupling present in robotic arm. In this paper, a chattering free sliding mode control (SMC) for a robot manipulator including PID part with a fuzzy tunable gain is designed. The main idea is that the robustness property of SMC and good response characteristics of PID are combined with fuzzy tuning gain approach to achieve more acceptable performance. A PID sliding surface is considered such that the robot dynamic equation can be rewritten in terms of sliding surface. Then in order to decrease the reaching time to the sliding surface and deleting the oscillation of the response, a fuzzy tuning system is used for adjusting both controller gains including sliding controller gain parameter and PID coefficient. Controller is applied to two link robot manipulator including model uncertainty and external disturbance as a case study. Simulation study has been done in MATLAB/Simulink environment shows the improvements of the results compare to conventional SMC.","PeriodicalId":269516,"journal":{"name":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBR.2013.6729269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
High accuracy trajectory tracking is challenging topic in robotic manipulator control. This is due to nonlinearities and input coupling present in robotic arm. In this paper, a chattering free sliding mode control (SMC) for a robot manipulator including PID part with a fuzzy tunable gain is designed. The main idea is that the robustness property of SMC and good response characteristics of PID are combined with fuzzy tuning gain approach to achieve more acceptable performance. A PID sliding surface is considered such that the robot dynamic equation can be rewritten in terms of sliding surface. Then in order to decrease the reaching time to the sliding surface and deleting the oscillation of the response, a fuzzy tuning system is used for adjusting both controller gains including sliding controller gain parameter and PID coefficient. Controller is applied to two link robot manipulator including model uncertainty and external disturbance as a case study. Simulation study has been done in MATLAB/Simulink environment shows the improvements of the results compare to conventional SMC.