RL-based Scheduling of an AAM Traffic Network

Arinc Tutku Altun, Yan Xu, G. Inalhan, Michael W. Hardt
{"title":"RL-based Scheduling of an AAM Traffic Network","authors":"Arinc Tutku Altun, Yan Xu, G. Inalhan, Michael W. Hardt","doi":"10.1109/CAI54212.2023.00045","DOIUrl":null,"url":null,"abstract":"This study presents an approach for pre-flight planning process to be used in the future Advanced Air Mobility (AAM) system especially after contingency situations and relevant activities take place. The methodology for scheduling is modeled as a reinforcement learning (RL) agent that resolves potential conflicts for the traffic and balances the demand and capacity at vertiports. The reason behind to use RL is that specific problem requires a very quick response since it also deals with resolving conflicts that are observed between the flights that are about to take-off and the contingent flights that diverted for an emergency landing. The main objective of this work is to develop a pre-flight planning service to work compatible with contingency management activities for enhancing the contingency management process for the AAM system.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an approach for pre-flight planning process to be used in the future Advanced Air Mobility (AAM) system especially after contingency situations and relevant activities take place. The methodology for scheduling is modeled as a reinforcement learning (RL) agent that resolves potential conflicts for the traffic and balances the demand and capacity at vertiports. The reason behind to use RL is that specific problem requires a very quick response since it also deals with resolving conflicts that are observed between the flights that are about to take-off and the contingent flights that diverted for an emergency landing. The main objective of this work is to develop a pre-flight planning service to work compatible with contingency management activities for enhancing the contingency management process for the AAM system.
基于rl的AAM交通网络调度
本研究提出了一种用于未来先进空中机动(AAM)系统的飞行前规划过程的方法,特别是在紧急情况和相关活动发生后。该调度方法被建模为一个强化学习(RL)代理,解决交通的潜在冲突,平衡垂直机场的需求和容量。使用RL的原因是,特定问题需要非常快速的响应,因为它还处理解决即将起飞的航班和紧急降落的临时航班之间观察到的冲突。这项工作的主要目标是开发一个飞行前计划服务,与应急管理活动兼容,以加强空空系统的应急管理过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信