Better Unrelated Machine Scheduling for Weighted Completion Time via Random Offsets from Non-uniform Distributions

Sungjin Im, Shi Li
{"title":"Better Unrelated Machine Scheduling for Weighted Completion Time via Random Offsets from Non-uniform Distributions","authors":"Sungjin Im, Shi Li","doi":"10.1109/FOCS.2016.23","DOIUrl":null,"url":null,"abstract":"In this paper we consider the classic scheduling problem of minimizing total weighted completion time on unrelated machines when jobs have release times, i.e, R|rij| Σj wjCj using the three-field notation. For this problem, a 2-approximation is known based on a novel convex programming (J. ACM 2001 by Skutella). It has been a long standing open problem if one can improve upon this 2-approximation (Open Problem 8 in J. of Sched. 1999 by Schuurman and Woeginger). We answer this question in the affirmative by giving a 1.8786-approximation. We achieve this via a surprisingly simple linear programming, but a novel rounding algorithm and analysis. A key ingredient of our algorithm is the use of random offsets sampled from non-uniform distributions. We also consider the preemptive version of the problem, i.e, R|rij, pmtn|ΣjwjCj. We again use the idea of sampling offsets from non-uniform distributions to give the first better than 2-approximation for this problem. This improvement also requires use of a configuration LP with variables for each job's complete schedules along with more careful analysis. For both non-preemptive and preemptive versions, we break the approximation barrier of 2 for the first time.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we consider the classic scheduling problem of minimizing total weighted completion time on unrelated machines when jobs have release times, i.e, R|rij| Σj wjCj using the three-field notation. For this problem, a 2-approximation is known based on a novel convex programming (J. ACM 2001 by Skutella). It has been a long standing open problem if one can improve upon this 2-approximation (Open Problem 8 in J. of Sched. 1999 by Schuurman and Woeginger). We answer this question in the affirmative by giving a 1.8786-approximation. We achieve this via a surprisingly simple linear programming, but a novel rounding algorithm and analysis. A key ingredient of our algorithm is the use of random offsets sampled from non-uniform distributions. We also consider the preemptive version of the problem, i.e, R|rij, pmtn|ΣjwjCj. We again use the idea of sampling offsets from non-uniform distributions to give the first better than 2-approximation for this problem. This improvement also requires use of a configuration LP with variables for each job's complete schedules along with more careful analysis. For both non-preemptive and preemptive versions, we break the approximation barrier of 2 for the first time.
基于非均匀分布随机偏移的非相关机器加权完成时间调度
本文研究了一类经典的调度问题,即当作业具有释放时间(R|rij| Σj wjCj)时,最小化不相关机器上的总加权完成时间。对于这个问题,已知的2逼近是基于一种新的凸规划(J. ACM 2001 by Skutella)。如果人们能够改进这个2-近似(Schuurman和Woeginger在J. of Sched. 1999出版的开放问题8),它已经是一个长期存在的开放问题。我们用1.8786的近似值来肯定地回答这个问题。我们通过一个非常简单的线性规划实现了这一点,但采用了一种新颖的舍入算法和分析。我们算法的一个关键成分是从非均匀分布中抽样的随机偏移量的使用。我们还考虑了问题的抢占式版本,即R|rij, pmtn|ΣjwjCj。我们再次使用非均匀分布的抽样偏移的思想来给出这个问题的第一个优于2的近似。这种改进还需要为每个作业的完整时间表使用带有变量的配置LP,并进行更仔细的分析。对于非抢占和抢占版本,我们首次打破了2的近似障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信