{"title":"SMRD: A Local Feature Descriptor for Multi-modal Image Registration","authors":"Jiayu Xie, Xin Jin, Hongkun Cao","doi":"10.1109/VCIP53242.2021.9675401","DOIUrl":null,"url":null,"abstract":"Image registration among multimodality has received increasing attention in the scope of computer vision and computational photography nowadays. However, the non-linear intensity variations prohibit the accurate feature points matching between modal-different image pairs. Thus, a robust image descriptor for multi-modal image registration is proposed, named shearlet-based modality robust descriptor(SMRD). The anisotropic feature of edge and texture information in multi-scale is encoded to describe the region around a point of interest based on discrete shearlet transform. We conducted the experiments to verify the proposed SMRD compared with several state-of-the-art multi-modal/multispectral descriptors on four different multi-modal datasets. The experimental results showed that our SMRD achieves superior performance than other methods in terms of precision, recall and F1-score.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Image registration among multimodality has received increasing attention in the scope of computer vision and computational photography nowadays. However, the non-linear intensity variations prohibit the accurate feature points matching between modal-different image pairs. Thus, a robust image descriptor for multi-modal image registration is proposed, named shearlet-based modality robust descriptor(SMRD). The anisotropic feature of edge and texture information in multi-scale is encoded to describe the region around a point of interest based on discrete shearlet transform. We conducted the experiments to verify the proposed SMRD compared with several state-of-the-art multi-modal/multispectral descriptors on four different multi-modal datasets. The experimental results showed that our SMRD achieves superior performance than other methods in terms of precision, recall and F1-score.