SMRD: A Local Feature Descriptor for Multi-modal Image Registration

Jiayu Xie, Xin Jin, Hongkun Cao
{"title":"SMRD: A Local Feature Descriptor for Multi-modal Image Registration","authors":"Jiayu Xie, Xin Jin, Hongkun Cao","doi":"10.1109/VCIP53242.2021.9675401","DOIUrl":null,"url":null,"abstract":"Image registration among multimodality has received increasing attention in the scope of computer vision and computational photography nowadays. However, the non-linear intensity variations prohibit the accurate feature points matching between modal-different image pairs. Thus, a robust image descriptor for multi-modal image registration is proposed, named shearlet-based modality robust descriptor(SMRD). The anisotropic feature of edge and texture information in multi-scale is encoded to describe the region around a point of interest based on discrete shearlet transform. We conducted the experiments to verify the proposed SMRD compared with several state-of-the-art multi-modal/multispectral descriptors on four different multi-modal datasets. The experimental results showed that our SMRD achieves superior performance than other methods in terms of precision, recall and F1-score.","PeriodicalId":114062,"journal":{"name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP53242.2021.9675401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image registration among multimodality has received increasing attention in the scope of computer vision and computational photography nowadays. However, the non-linear intensity variations prohibit the accurate feature points matching between modal-different image pairs. Thus, a robust image descriptor for multi-modal image registration is proposed, named shearlet-based modality robust descriptor(SMRD). The anisotropic feature of edge and texture information in multi-scale is encoded to describe the region around a point of interest based on discrete shearlet transform. We conducted the experiments to verify the proposed SMRD compared with several state-of-the-art multi-modal/multispectral descriptors on four different multi-modal datasets. The experimental results showed that our SMRD achieves superior performance than other methods in terms of precision, recall and F1-score.
SMRD:多模态图像配准的局部特征描述符
多模态图像配准在计算机视觉和计算摄影领域受到越来越多的关注。然而,非线性的强度变化限制了不同模态图像对之间特征点的精确匹配。为此,提出了一种用于多模态图像配准的鲁棒图像描述符,即基于shearlet的模态鲁棒描述符(SMRD)。利用多尺度边缘和纹理信息的各向异性特征,基于离散shearlet变换对感兴趣点周围区域进行编码。我们在四种不同的多模态数据集上与几种最先进的多模态/多光谱描述符进行了实验,以验证所提出的SMRD。实验结果表明,该方法在查全率、查全率和f1分数方面均优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信